APPLICATION NOTE

Calculating Power Dissipation on LVDS Driver/Receiver Family

> 2/20/2025 Version #: 1.0.0

Version #: 1.0.0

2/20/2025

Table of Contents

Table of Contents	.2
Calculating Power Dissipation on LVDS Driver/Receiver Family	.3
Overview	.3
Technical Figures and Data	.4
Calculating of Power with Variable Load Capacitance	21
LVDS Driver Power Calculations:	22
LVDS Receiver Power Calculations:	22
Example Calculations	23
Conclusion	26
Additional Comments	26

Table 1: Cross Reference of Applicable Products	3
Table 2. UT54LVDS031LV/E Current vs. Frequency Data over Temperature with mA/MHz calculated	9
Table 3. UT54LVDS032LV/E E Current vs. Frequency Data over Temperature with mA/MHz calculated	10
Table 4. UT54LVDS032LVT E Current vs. Frequency Data over Temperature with mA/MHz calculated	11
Table 5. UT54LVDM031LV Current vs. Frequency Data over Temperature with mA/MHz calculated	12
Table 6. UT54LVDM055LV Current vs. Frequency Data over Temperature with mA/MHz calculated	13
Table 7.UT54LVDS031 Current vs. Frequency Data over Temperature with mA/MHz calculated	17
Table 8. UT54LVDS032 Current vs. Frequency Data over Temperature with mA/MHz calculated	18
Table 9.UT54LVDSC031 Current vs. Frequency Data over Temperature with mA/MHz calculated	19
Table 10. UT54LVDSC032 Current vs. Frequency Data over Temperature with mA/MHz calculated	20
Table 11. LVDS Driver/Receiver DC Electrical Parameters 1,2	23

Figure 1. Standard point-to-point LVDS Driver Receiver Configuration	4
Figure 2A. LVDS Driver Test Configuration. Unused drivers are driven low, meaning DIN = Vss	4
Figure 2B. LVDS Receiver Test Configuration. Unused receivers have inputs floating, RIN+ = RIN- = FLOAT	5
Figure 2. UT54LVDS031LV/E Active current vs. Frequency	5
Figure 3. UT54LVDS032LV/E Active current vs. Frequency	6
Figure 4. UT54LVDS032LVT Active current vs. Frequency	6
Figure 5. UT54LVDM031LV Active current vs. Frequency	7
Figure 6. UT54LVDM055LV Active current vs. Frequency	7

Version #: 1.0.0

2/20/2025

Figure 7. UT54LVDS031 Active current vs. Frequency	. 14
Figure 8. UT54LVDS032 Active current vs. Frequency	. 15
Figure 9. UT54LVDSC031 Active current vs. Frequency	. 15
Figure 10. UT54LVDSC032 Active current vs. Frequency	. 16

Calculating Power Dissipation on LVDS Driver/Receiver Family

Table 1: Cross Reference of Applicable Products

Product Name:	Manufacturer Part Number	SMD #	Device Type	Internal PIC*
3.3-VOLT QUAD DRIVER	UT54LVDS031LV/E	5962-98651	02, 03, 04, 05	WD03, WD07, WD28, WD30
3.3-VOLT QUAD RECEIVER	UT54LVDS032LV/E	5962-98652	02, 03, 04, 05	WD04, WD08, WD29, WD31
3.3-VOLT QUAD RECEIVER with TERMINATION RESISTOR	UT54LVDS032LVT	5962-04201	01, 02	WD06, WD10
3.3V BUS QUAD DRIVER	UT54LVDM031LV	5962-06201	01	WD21
3.3V DUAL DRIVER and RECEIVER	UT54LVDM055LV	5962-06202	01	WD22
5.0V QUAD DRIVER	UT54LVDS031	5962-95833	02	JR05, JR08
5.0V QUAD RECEIVER	UT54LVDS032	5962-95834	02	JR06. JR09
5.0V QUAD DRIVER with COLD SPARE	UT54LVDSC031	5962-95833	03	JR10
5.0V QUAD RECEIVER with COLD SPARE	UT54LVDSC032	5962-95834	03	JR11

*PIC = Product Identification Code

Overview

Low Voltage Differential Signaling (LVDS) and bus Low Voltage Differential Signaling (LVDM) technologies are excellent solutions for moving large amounts of data quickly between system components. LVDS/LVDM systems run at high data rates, with low switching power, high noise immunity, and wide common mode range.

Accurate power calculations are necessary determine system power supply and thermal management requirements. The purpose of this application note is to review power consumption of Aeroflex Colorado Springs LVDS/LVDM driver and receiver families. To perform a thorough power analysis, it is necessary to investigate both static power consumption and "at frequency" or dynamic power consumption. Static power is the power dissipated under DC conditions when the part is powered, the drivers/receivers are enabled, but the device is not switching. Dynamic power consumption is due to the clocking and switching activity of the device.

This application note develops the components of LVDS/LVDM power consumption and example power dissipation calculations for typical LVDS/LVDM differential line drivers and receivers.

A standard point-to-point configuration is shown in Figure 1. This configuration is terminated by either a 100Ω or 35Ω resistor across the differential pair. Termination resistor selection is determined the differential signaling standard is used. LVDS requires a 100Ω resistor, while LVDM requires 35Ω . A constant current source feeds the differential outputs of the driver. The direction of current flow through the termination resistor (R_T) determines the logic state of the receiver output.

2/20/2025

In most cases (except when UT54LVDS032LVT is used) the termination is external to the receiver input terminals. Total power consumed by the standard point-to-point configuration is the device power minus the termination power. The LVDS output power consumption is a function of the output swing and the termination.

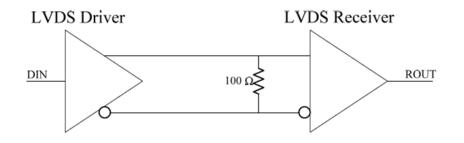


Figure 1. Standard point-to-point LVDS Driver Receiver Configuration

Technical Figures and Data

The following plots show active current, or AIDD, measurements versus frequency and are used as input current for calculating power dissipation and power dissipation capacitance(CPD). The AIDD values are from maximum measurements taken during characterization of a single driver/receiver channel on each device configured under the following conditions.

Please note that the following data was obtained in a lab. The test setup does not match the test configurations shown for the AC and DC electrical characteristics described in the Aeroflex Datasheets and corresponding DSCC SMDs.

3.3V Device Data

Devices: UT54LVDS031LV/E, UT54LVDS032LV/E, UT54LVDS032LVT, UT54LVDM031LV, and UT54LVDM055LV

- Temperature: T_c = 25°C, +125°C, -55°C,
- Voltage: VDD =3.3 V
- Frequency: *f*=1MHz, 50MHz, 100MHz, 150MHz, 200MHz

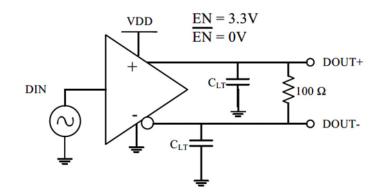


Figure 2A. LVDS Driver Test Configuration. Unused drivers are driven low, meaning DIN = Vss

Version #: 1.0.0

2/20/2025

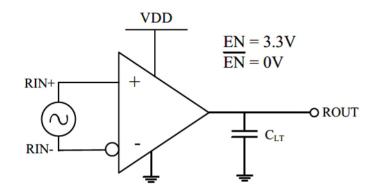


Figure 2B. LVDS Receiver Test Configuration. Unused receivers have inputs floating, RIN+ = RIN- = FLOAT

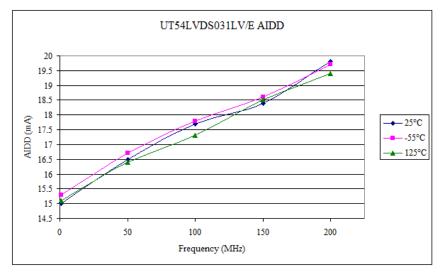


Figure 2. UT54LVDS031LV/E Active current vs. Frequency

Description

Version #: 1.0.0

2/20/2025

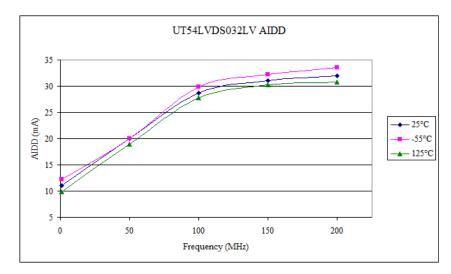


Figure 3. UT54LVDS032LV/E Active current vs. Frequency

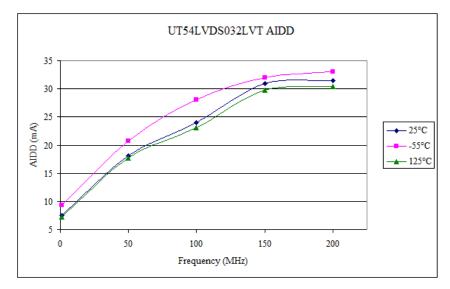


Figure 4. UT54LVDS032LVT Active current vs. Frequency

Description

Version #: 1.0.0

2/20/2025

Figure 5. UT54LVDM031LV Active current vs. Frequency

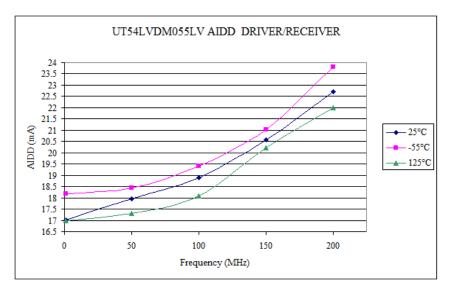


Figure 6. UT54LVDM055LV Active current vs. Frequency

Using the AIDD graphs provided above, or the data contained in tables 2 through 6 below, an estimate of the power supply current can be calculated by taking the slope of the line between two adjacent frequencies at a given temperature and multiplying by the user's desired frequency. The values in the "Slope (mA/MHz)" column are the values for the power supply input current that will be used in determining the power dissipation, power dissipation capacitance, and dynamic current consumption later in this application note.

Description

2/20/2025

Version #: 1.0.0

Power dissipation capacitance or (C_{PD}) for the LVDS drivers was calculated using equation 1 as follows. It can be noted that the LVDS driver output switches only 340mV which is approximately 10x less than VDD = 3.3V or 5.0V, so C_{LT} can be neglected.

$$C_{PD} = \frac{Average(AIDD(slope))}{V_{DD}}$$
(1)

The CPD value presented in Table 2 was calculated as follows in example 1.

Example 1

$$C_{PD} = \frac{Average(AIDD(slope))}{V_{DD}} = \frac{Average(0.0236, 0.221, 0.216)}{3.3V} = 6.81 pF$$

C_{PD} for the LVDS receivers was calculated using equation 2 as follows. Since the LVDS receiver outputs switch rail to rail VDD = 3.3V or 5.0V, C_{LT} must be accounted for.

$$C_{PD} = \frac{Average(AIDD(slope))}{V_{DD}} - C_{LT}$$
(2)

The C_{PD} value presented in Table 3 was calculated as follows in example 2.

Example 2

$$C_{PD} = \frac{Average(AIDD(slope))}{V_{DD}} - C_{LT} = \frac{Average(0.178, 0.178, 0.180)}{3.3} - 40\,pF = 14.37\,pF$$

Version #: 1.0.0

2/20/2025

Table 2. UT54LVDS031LV/E Current vs. Frequency Data over Temperature with mA/MHz calculated

UT54LVDS031LV/E	Temperature	Frequ	ency	AIDD	Slope
	(°C)	(MHz)		(mA)	(mA/MHz)
VDD=3.3V	25	SIDD	0	15.0	
	25	1		15.1	
C _{LT} =20pF	25	50		16.5	0.028
	25	100		17.7	0.024
C _{PD} =6.81pF	25	150		18.4	0.014
	25	200		19.8	0.028
				Average S	Slope = 0.0236
	-55	SIDD	0	15.2	
	-55	1		15.3	
	-55	50		16.7	0.028
	-55	100		17.8	0.022
	-55	150		18.6	0.016
	-55	200		19.7	0.022
				Average Slope = 0	0.0221
	125	SIDD	0	15.0	
	125	1		15.1	
	125	50		16.4	0.026
	125	100		17.3	0.018
	125	150		18.5	0.024
	125	200		19.4	0.018
				Average Slope = C	0.0216

Version #: 1.0.0

2/20/2025

Table 3. UT54LVDS032LV/E Current vs. Frequency Data over Temperature with mA/MHz calculated

UT54LVDS032LV/E	Temperature	Freque	ency	AIDD	Slope
	(°C)	(MHz)		(mA)	(mA/MHz)
VDD=3.3V	25	SIDD	0	10.9	
	25	1		11	
C _{LT} =40pF	25	50		20	0.183
	25	100		28.7	0.174
C _{PD} =14.37pF	25	150		31	0.046*
	25	200		32	0.02*
	-			Average Slope = 0.	178
	-55	SIDD	0	12.1	
	-55	1		12.2	
	-55	50		20	0.159
	-55	100		29.9	0.198
	-55	150		32.2	0.046*
	-55	200		33.5	0.026*
				Average Slope = 0.178	
	125	SIDD	0	9.8	
	125	1		9.9	
	125	50		18.9	0.183
	125	100		27.8	0.178
	125	150		30.3	0.05*
	125	200		30.8	0.01*
				Average Slope = 0.	180

* = These values were not included in the Average Slope calculation. These values were omitted because the output of the receiver was not swinging rail to rail.

Description

Version #: 1.0.0

2/20/2025

Table 4. UT54LVDS032LVT E Current vs. Frequency Data over Temperature with mA/MHz calculated

UT54LVDS032LVT	Temperature	Frequency	AIDD	Slope
	(°C)	(MHz)	(mA)	(mA/MHz)
VDD=3.3V	25	SIDD 0	7.3	
	25	1	7.49	
C _{LT} =40pF	25	50	18.04	0.215
	25	100	24	0.119
C _{PD} =11.31pF	25	150	30.98	0.139
	25	200	31.43	0.009*
			Average Slope =0.2	158
	-55	SIDD 0	9.1	
	-55	1	9.35	
	-55	50	20.77	0.233
	-55	100	28	0.144
	-55	150	32.01	0.080*
	-55	200	32.98	0.019*
			Average Slope =0.2	188
	125	SIDD 0	7.08	
	125	1	7.2	
	125	50	17.67	0.213
	125	100	23.1	0.1086
	125	150	29.81	0.1342
	125	200	30.4	0.0118*
			Average Slope =0.2	161

* = These values were not included in the Average Slope calculation. These values were omitted because the output of the receiver was not swinging rail to rail.

Description

Version #: 1.0.0

2/20/2025

Table 5. UT54LVDM031LV Current vs. Frequency Data over Temperature with mA/MHz calculated

UT54LVDM031LV	Temperature	Frequency	AIDD	Slope
	(°C)	(MHz)	(mA)	(mA/MHz)
VDD=3.3V	25	SIDD 0	14.53	
	25	1	14.56	
C _{LT} =20pF	25	50	15.17	0.0124
	25	100	15.54	0.0074
C _{PD} =4.72pF	25	150	16.27	0.0146
	25	200	18.09	0.0364
	·		Average Slope =	0.017
	-55	SIDD 0	14.9	
	-55	1	14.96	
	-55	50	15.65	0.0140
	-55	100	16.48	0.0166
	-55	150	17.1	0.0124
	-55	200	18.17	0.0214
	·		Average Slope =	0.016
	125	SIDD 0	14.7	
	125	1	14.72	
	125	50	14.96	0.0048
	125	100	15.45	0.0098
	125	150	15.76	0.0062
	125	200	17.3	0.0308
		-	Average Slope =	0.013

Description

Version #: 1.0.0

2/20/2025

Table 6. UT54LVDM055LV Current vs. Frequency Data over Temperature with mA/MHz calculated

UT54LVDM055LV	Temperature	Frequ	uency	AIDD	Slope
	(°C)	(MHz)		(mA)	(mA/MHz)
VDD=3.3V	25	SIDD	0	17	
	25	1		17.03	
	25	50		17.97	0.0191837
	25	100		18.9	0.0186
C _{LT} =20pF (DRIVER)	25	150		20.56	0.0332
C _{LT} =40pF (RECEIVER)	25	200		22.7	0.0428
	·			Average Slop	e =0.0284
C _{PD} =8.25pF					
	-55	SIDD	0	17.23	
	-55	1		18.17	
	-55	50		18.44	0.0055102
	-55	100		19.4	0.0192
	-55	150		21.01	0.0322
	-55	200		23.81	0.056
				Average Slop	e =0.0282
	125	SIDD	0	16.9	
	125	1		17	
	125	50		17.32	0.0065306
	125	100		18.1	0.0156
	125	150		20.21	0.0422
	125	200		22	0.0358
				Average Slop	e =0.025

Description

Version #: 1.0.0

2/20/2025

5.0V Device Data

Devices: UT54LVDS031, UT54LVDS032, UT54LVDSC031, and UT54LVDSC032

- Temperature: TC = 25°C, +125°C, -55°C
- Voltage: VDD =5.0 V
- Frequency: *f*=1MHz, 25MHz, 50MHz, 75MHz, 100MHz

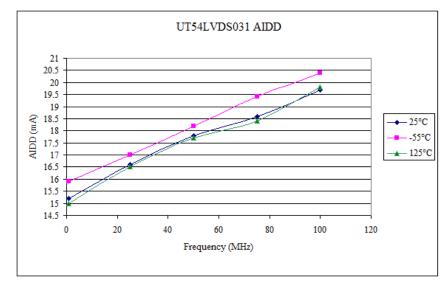


Figure 7. UT54LVDS031 Active current vs. Frequency

Description

Version #: 1.0.0

2/20/2025

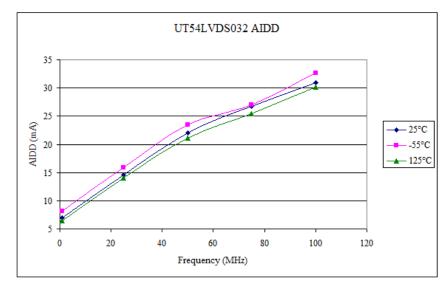


Figure 8. UT54LVDS032 Active current vs. Frequency

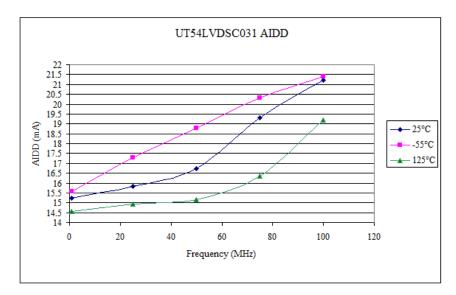


Figure 9. UT54LVDSC031 Active current vs. Frequency

Description

Version #: 1.0.0

2/20/2025

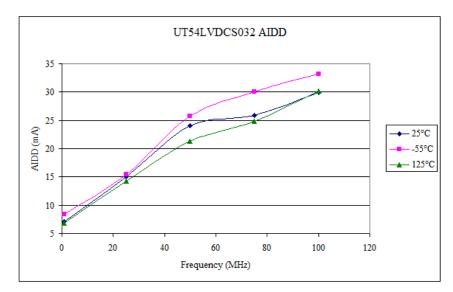


Figure 10. UT54LVDSC032 Active current vs. Frequency

Again, the device characterization data used to generate Figures 7 to 10 follows in Tables 7 through 10. Using the AIDD graphs provided above, or the data contained below, an estimate of the power supply current can be calculated by taking the slope of the lines at various frequencies.

Description

Version #: 1.0.0

2/20/2025

Table 7.UT54LVDS031 Current vs. Frequency Data over Temperature with mA/MHz calculated

UT54LVDS031	Temperature	Frequency	AIDD	Slope
	(°C)	(MHz)	(mA)	(mA/MHz)
VDD=5.0V	25	SIDD 0	15.1	
	25	1	15.2	
CLT=20pF	25	25	16.6	0.0583
	25	50	17.8	0.048
C _{PD} =9.31pF	25	75	18.6	0.032
	25	100	19.7	0.044
	•		Average Slope =	0.046
	-55	SIDD 0	15.8	
	-55	1	15.9	
	-55	25	17	0.0458
	-55	50	18.2	0.048
	-55	75	19.4	0.048
	-55	100	20.4	0.04
			Average Slope =	0.045
	125	SIDD 0	14.9	
	125	1	15.0	
	125	25	16.5	0.0625
	125	50	17.7	0.048
	125	75	18.4	0.028
	125	100	19.8	0.056
			Average Slope =	0.048

Version #: 1.0.0

2/20/2025

Table 8. UT54LVDS032 Current vs. Frequency Data over Temperature with mA/MHz calculated

UT54LVDS032	Temperature	Frequenc	y AIDD	Slope
	(°C)	(MHz)	(mA)	(mA/MHz)
VDD=5.0V	25	SIDD 0	6.8	
	25	1	7	
C _{LT} =40pF	25	25	14.5	0.3125
	25	50	22	0.3
C _{PD} =21.12pF	25	75	26.7	0.188*
	25	100	31	0.172*
	·		Average Slope =0	.306
	-55	SIDD 0	8	
	-55	1	8.2	
	-55	25	15.9	0.32083333
	-55	50	23.5	0.304
	-55	75	27	0.14*
	-55	100	32.7	0.228*
			Average Slope =0	.312
	125	SIDD 0	6.3	
	125	1	6.5	
	125	25	14	0.3125
	125	50	21.1	0.284
	125	75	25.4	0.172*
	125	100	30.2	0.192*
			Average Slope =0	.298

* = These values were not included in the Average Slope calculation. These values were omitted because the output of the receiver was not swinging rail to rail.

FRONTGRADE APPLICATION NOTE

Description

Version #: 1.0.0

2/20/2025

Table 9.UT54LVDSC031 Current vs. Frequency Data over Temperature with mA/MHz calculated

UT54LVDSC031	Temperature	Freque	ncy	AIDD	Slope
	(°C)	(MHz)		(mA)	(mA/MHz)
VDD=5.0V	25	SIDD 0		15.16	
	25	1		15.23	
C _{LT} =20pF	25	25		15.83	0.025
	25	50		16.72	0.0356
C _{PD} =10.2pF	25	75		19.3	0.1032
	25	100		21.2	0.076
				Average Slope =0.0599	
	-55	SIDD 0		15.5	
	-55	1		15.56	
	-55	25		17.3	0.0725
	-55	50		18.78	0.0592
	-55	75		20.3	0.0608
	-55	100		21.4	0.044
		Average Slope =0.0591			
	125	SIDD 0		14.4	
	125	1		14.57	
	125	25		14.95	0.0158333
	125	50		15.16	0.0084
	125	75		16.35	0.0476
	125	100		19.18	0.1132
				Average Slope =	0.046

Description

Version #: 1.0.0

2/20/2025

Table 10. UT54LVDSC032 Current vs. Frequency Data over Temperature with mA/MHz calculated

UT54LVDS032	Temperature	Frequency	AIDD	Slope		
	(°C)	(MHz)	(mA)	(mA/MHz)		
VDD=5.0V	25	SIDD 0	6.8			
	25	1	7.09			
C _{LT} =40pF	25	25	15.04	0.3312		
	25	50	24.03	0.3596		
C _{PD} =26.43pF	25	75	25.9	0.0748*		
	25	100	29.87	0.1588*		
		Average Slope =0.345				
	-55	SIDD 0	8.1			
	-55	1	8.34			
	-55	25	15.4	0.294		
	-55	50	25.76	0.4144		
	-55	75	30	0.1696*		
	-55	100	33.21	0.1284*		
		-	Average Slope =	Slope =0.354		
	125	SIDD 0	6.53			
	125	1	6.77			
	125	25	14.2	0.3095		
	125	50	21.3	0.284		
	125	75	24.8	0.14*		
	125	100	30.11	0.2124*		
			Average Slope =0.296			

* = These values were not included in the Average Slope calculation. These values were omitted because the output of the receiver was not swinging rail to rail.

Version #: 1.0.0

2/20/2025

Calculating of Power with Variable Load Capacitance

The following equations and examples are provided as a guide for estimating static power dissipation, dynamic power dissipation, and power dissipation capacitance using various capacitive loads.

Definition of Ter	ms:
V _{DD}	Supply Voltage (V)
V _{OD}	Differential Output Voltage, ±0.340V for Drivers/Receivers (V)
V _{OL}	Low-level output voltage (V)
V _{OL} (actual)	Load Dependant Low-level output voltage (V)
V _{OH}	High-level output voltage (V)
V _{он} (actual)	Load Dependant High-level output voltage (V)
AIDD	Active Current (mA)
AIDD(slope)	Slope of AIDD (mA/MHz)
AIDD(frequency)	Active current at given frequency (mA)
SIDD	Standby Current Device Enabled f=0MHz (mA)
I _{OL}	Low level output current (mA)
I _{OH}	High level output current (mA)
I _{OD}	LVDS Driver Output Current (mA)
P _{DCL}	Percent Duty Cycle Driving Logic Low (%)
P _{DCH}	Percent Duty Cycle Driving Logic High (%)
N _{SWDP}	Number of switching differential pairs
No	Number of switching CMOS outputs
C _{PD}	Power Dissipation Capacitance (F)
CL	Load Capacitance (F)
C _{LT}	Capacitive per switching output Tester Load (F)
f	Frequency (Hz)
P _{RLOAD}	Resistive Load Output Power (W)
P _{STD}	Static DC Power Dissipation for Driver (W)
P _{STR}	Static DC Power Dissipation for Receiver (W)
P _{DYND}	Dynamic Power Dissipation for Driver (W)
P _{DYNR}	Dynamic Power Dissipation for Receiver (W)
P _{TOTALD}	Total Driver Power Dissipation (W)
P _{TOTALR}	Total Receiver Power Dissipation (W)

Driver Static Power is the power the device consumes when enabled and V_{DD} is within the recommended operating conditions. Dynamic power is the power required to switch "N" number of LVDS/LVDM differential output pairs or single ended digital output loads. The total driver power is the static power plus the dynamic power plus the internal switching power at a given toggle frequency.

Description

2/20/2025

Version #: 1.0.0

LVDS Driver Power Calculations:

Static Device Power (PSTD):

$$P_{STD} = SIDD * V_{DD}$$
(3)

Dynamic Power per Switching Driver (PDYND):

$$P_{DYND} = \left(\left(C_{PD} \left(V_{DD}^{2} * f \right) \right) + \left(C_{L} \left(V_{DD} * V_{OD} \right) * f \right) \right)$$
(4)

Total Driver Power (PTOTALD):

$$P_{TOTALD} = (P_{STD} + (N_{SWDP} * P_{DYND})) = (SIDD * V_{DD}) + (N_{SWDP} [(C_{PD} (V_{DD}^{2} * f)) + (C_{L} (V_{DD} * V_{OD}) * f)])$$
(5)

LVDS Receiver Power Calculations:

Static Device Power (PSTR):

$$P_{STR} = SIDD * V_{DD}$$
(6)

Resistive Output Load Power (PLOAD):

$$P_{RLOAD} = \left[\left(P_{DCL} * V_{OL} * I_{OL} \right) + \left(P_{DCH} * \left(V_{DD} - V_{OH} \right) * \left| I_{OH} \right| \right) \right]$$
(7)

Dynamic Power per Switching Receiver (PDYNR):

$$P_{DYNR} = \left(C_{PD}\left(V_{DD}^{2} * f\right)\right) + \left(C_{L}\left(V_{OH}\left(actual\right) - V_{OL}\left(actual\right)\right)^{2} * f\right)$$
(8)

Total Receiver Power (PTOTALR):

$$P_{TOTALR} = P_{STR} + \left(N_O \left(P_{DYNR} + P_{RLOAD} \right) \right)$$
(9)

Version #: 1.0.0

2/20/2025

Table 11. LVDS Driver/Receiver DC Electrical Parameters ^{1,2}

LVDS Part ID	CLT	I _{OD}	f (max)	V _{OL}	V _{он}	I _{ОН}	I _{OL}
UT54LVDS031	20pF	3.5mA	77.7MHz	0.90V	1.60V		
UT54LVDS032	40pF		77.7MHz	0.3V	4.0V	-0.4mA	2.0mA
UT54LVDSC031	20pF	3.5mA	77.7MHz	0.90V	1.60V		
UT54LVDSC032	40pF		77.7MHz	0.3V	4.0V	-0.4mA	2.0mA
UT54LVDS031LV/E	20pF	3.5mA	200MHz	0.925V	1.650V		
UT54LVDS032LV/E	40pF		200MHz	0.25V	2.7V	-0.4mA	2.0mA
UT54LVDS032LVT	40pF	3.5mA	200MHz	0.25V	2.7V		
UT54LVDM031LV	20pF	10mA	200MHz	0.855V	1.750V		
UT54LVDM055LV ³	20pF 40pF	10mA 	200MHz 200MHz	0.855V 0.25V	1.750V 2.7V	 -0.4mA	 2.0mA

Notes:

- 1. All values are typical unless otherwise noted.
- 2. The top line contains specifications for the Driver, the bottom line for the Receiver.
- 3. Values are per the datasheet DC electrical characteristics.

Example Calculations

The following sections walk the designer through two example calculations using the data and equations presented in sections 2.0 and 3.0 above.

Example 3

The UT54LVDS031LV analysis assumes utilization of 2 driver channels switching at 170MHz with 50pF capacitive loads at 25°C.

UT54LVDS031LV Driver Power

$V_{DD} = 3.3V$	$V_{op} = 0.340V$
$N_{SWDP} = 2$	
$C_{I} = 50 pF$	$I_{OD} = .0035A$
AIDD(slope) = 0.028mA/MHz	f = 170 MHz
	$C_{PD} = 6.81 pF$ (Table 2)
SIDD = 15.0 mA (Table 2)	

Static Device Power (Pstd):

Using equation (3):

$$P_{STD} = SIDD * V_{DD} = 15.0 mA * 3.3V = 49.5 mW$$

Description

Version #: 1.0.0

2/20/2025

Dynamic Power per Active Driver (PDYND):

 $P_{DYND} = \left(\left(C_{PD} \left(V_{DD}^{2} * f \right) \right) + \left(C_{L} \left(V_{DD} * V_{OD} \right) * f \right) \right) = \\ \left(\left(6.81 pF \left(3.3 V^{2} * 170 MHz \right) \right) + \left(50 pF \left(3.3 V * 0.340 V \right) * 170 MHz \right) \right) = \\ 12.61 mW + 9.53 mW = 22.14 mW$

Total Device Power Dissipation (PTOTALD):

2 switching differential outputs:

 $P_{TOTALD} = P_{STD} + (N_{SWDP}(P_{DYND})) = 49.56 mW + (2(22.14mW)) = 93.78 mW$

Quickly comparing the measured data from table 2 using Joule's Law (P=I*V):

 $I = (AIDD(slope) * f * N_{SWDP}) + SIDD = (0.028mA / MHz * 170MHz * 2) + 15.0mA = 24.52mA$

2 switching differential outputs:

P = I * V = 24.52 mA * 3.3V = 80.92 mW

If example 4 were recalculated using a CL of 20pF, a result of 82.34mW is obtained. Therefore, the CPD form of the power calculation is within 2% of the Joule's Law form.

Version #: 1.0.0

Calculating Power Dissipation on LVDS Driver/Receiver Family

Description

2/20/2025

Example 4

The UT54LVDS032 analysis assumes utilization of all 4 receivers switching at 40MHz (50/50 duty cycle), with a 20pF capacitive load, and a 2.35k Ω pull up on the CMOS output, at -55°C. A pull up resistor is present on the CMOS output of the receiver to pull up the output of the receiver if the enable signals disable and Z state the outputs (EN = L and /EN = H). In practice the bias resistor will be defined by the system designer.

$$\begin{split} V_{DD} &= 5.0V \\ C_{L} &= 20\,pF \\ C_{PD} &= 21.12\,pF\,(Table~8) \\ N_{O} &= 4 \\ P_{DCL} &= 0.5 \qquad P_{DCH} = 0.5 \\ f &= 40MHz \\ V_{OH}\,(actual) &= 5.0V \\ V_{OL}\,(actual) &= V_{DD} - \left(2.35k\Omega^{*}I_{OH}\right) = 5.0V - 4.7V = 0.3V \quad at~I_{OL} = 2.0mA \end{split}$$

Static Device Power (PSTR):

$$P_{STR} = SIDD * V_{DD} = 8.0mA * 5.0V = 40.0mW$$

Dynamic Power per Switching Receiver (PDYNR):

$$P_{DYNR} = \left(C_{PD}\left(V_{DD}^{2} * f\right)\right) + \left(C_{L}\left(V_{OH}\left(actual\right) - V_{OL}\left(actual\right)\right)^{2} * f\right) = \left(21.12 \, pF\left(5.0V^{2} * 40MHz\right)\right) + \left(20 \, pF\left(5.0V - 0.3V\right)^{2} * 40MHz\right) = 21.1mW + 17.7mW = 38.79mW$$

Resistive Output Load Power (PLOAD):

$$P_{RLOAD} = \left[\left(P_{DCL} * V_{OL} * I_{OL} \right) + \left(P_{DCH} * \left(V_{DD} - V_{OH} \right) * \left| I_{OH} \right| \right) \right] = \left[\left(0.5 * 0.3V * 2.0mA \right) + \left(0.5 * \left(5.0V - 5.0V \right) * 0.4mA \right) \right] = 0.3mW + 0 = 0.3mW$$

Total Device Power (PTOTALR):

 $P_{TOTALRm} = P_{STR} + (N_O (P_{DYNR} + P_{RLOAD})) =$ = 40.0mW + (4(38.79mW + 0.3mW)) = 196.37mW

Quickly comparing this to Joule's Law (P=I*V):

4 switching outputs:

$$I = ((AIDD(slope)) * f * N_o) + SIDD = (0.304mA / MHz * 40MHz * 4) + 8.0mA = 56.64mA$$

P = I * V = 56.64 mA * 5.0V = 283.2 mW for 4 outputs switching

Version #: 1.0.0

2/20/2025

If example 5 were recalculated using a CL of 40pF, a result of 267.06mW is obtained. Therefore, the CPD form of the power calculation is within 6% of the Joule's Law form.

Conclusion

This application note empowers the designer to more accurately determine the power dissipation of Aeroflex's LVDS products as implemented in the user's application. The calculations described in the above sections employ application specific variables such as load capacitance, frequency, DC loading, etc that contribute to overall power dissipation. With accurate power dissipation improved power supply selection and thermal management schemes can be designed.

Additional Comments

Data contained in this application note is NOT GUARANTEED. The data is intended to provide system designers with better estimate of LVDS driver and receiver power dissipation.

To optimize power conservation tie unused driver inputs either high (VDD) or low (VSS), and leave unused outputs unconnected (no termination resistor connected, RT).

Leave unused receiver inputs floating, the unused input pins should be floated near the pin on the receiver device. There is a fail safe mode on the Aeroflex LVDS receivers that force the outputs to a high state. Unused receiver inputs should not be connected to noise sources. Do not connect unused receiver input pins to a floating cable or trace because they will act as a noise antenna. Unused receiver outputs should be left unconnected to further power conservation.

Revision History

Date	Revision #	Author	Change Description	Page #
02/21/2025	1.0.0	MJL	Converted to FG format from original App Note (JLarsen) dated Sept 17 2009	NA

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service convey a license to any patents rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.