
APPLICATION NOTE
UT32M0R500
Arm Cortex M0+ CAN Unit

8/14/2019
Version #: 1.0.0

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 2 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

Table 1:Cross Reference of Applicable Products

Product Name Manufacturer Part Number SMD # Device Type Internal Pic Number
Arm Cortex M0+ UT32M0R500 5962-17212 CAN Unit QS30

1.0 Overview
The UT32M0R500 contains two Control Area Network (CAN) controllers. CAN is a serial data communications bus with error
detection and data rates up to 1 Mbits per second. Originally developed by Bosch Corporation for automobiles, CAN has
expanded to automation and control applications. The CAN protocol is part of the ISO 11989 standard. The CAN system
consists of the bus with CANH and CANL wires terminated with 120 Ohm resistors, the UT64CAN333x transceiver
(recommended), and the UT32M0R500 CAN controller. Figure 1 shows the CAN communication system.

Figure 1: CAN communication system

CAN provides data frame transmission and remote transmission request communication. Data frame transmission is for
sending a message; remote transmission request is for requesting a message. Error signaling and retransmission is done
internal to the hardware.

CAN is based on broadcasting messages rather than address-based messages. CAN sends each message on the bus with a
unique identifier; the unique identifier defines both the contents and priority of the message. The priority of the message is
for bus arbitration when several nodes compete for bus access.

For BasiCAN or Standard CAN, the frame can have up to 135 bits, which includes Inter Frame Space (IFS), 24 stuff bits and
the 11 bit identifier can have up to 2^11 possible addressable messages, see Figure 2.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 3 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

Figure 2: Basic (Standard) CAN Frame

For Extended CAN or PeliCAN, the frame can have up to 160 bits, which includes Inter Frame Space (IFS) and 24 stuff bits
and the 29 bit identifier can have up to 2^29 possible addressable messages, see Figure 3.

Figure 3: Extended (PeliCAN) CAN Frame

2.0 Application Note Layout
This application note (AN) provides a description of the CAN unit’s hardware, configuration and programming.

3.0 CAN Bus
The CAN bus contains two wires in differential mode for one logic bit; the wires are CANH and CANL. The state of the
transmitter is either dominant or recessive, see Figure 4.

Figure 4: CAN Nominal Bus Levels

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 4 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

When two or more nodes are competing, their output follows a wired-AND mechanism with the dominant state overriding
the recessive one, see Figure 5 for CAN arbitration.

Figure 5: CAN Arbitration

3.1 CAN BUS Connection

The CAN network is a party-line connection that allows many CAN nodes to be connected. The logical number of nodes on
the bus is limited to the size of the CAN ID. In CAN 2.0B extended mode, more nodes can be connected. In order for the
CAN bus to function properly, termination resistors are used to impede reflections on the bus. To determine the correct
value of the termination resistors, check the impedance of the cable and match the resistor to it. For a CAN bus cable with a
120-ohm line impedance, a 120-ohm resistor is used. In high-speed bus communications, termination resistors at both ends
of the bus will be required.

Usually, the Master is placed at one end of the bus, but it’s possible to have it connected in the middle with termination of
nodes at both ends of the bus line. Figure 6 shows the CAN nodes connection paradigm and the relationship between nodes
and their respective maximum distance. Table 2 shows the distance between nodes based on end nodes, sub-nodes, and
bus speed.

Table 2: CAN Bus Speed and Cable Length Legend:

Bus Speed Bus Length (L) Cable Stub Length (l) Node Distance (d)

1 Mbit/s 40 meters/131 feet 0.3 meters/1 foot 40 meters/131 feet

500Kbits/s 100 meters/328 feet 0.3 meters/1 foot 100 meters/328 feet

100Kbits/s 500 meters/1640 feet 0.3 meters/1 foot 500 meters/1640 feet

50 Kbits/s 1000 meters/3280 feet 0.3 meters/1 foot 1000 meters/3280 feet

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 5 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

Legend:
L: Maximum Bus Length

l: Maximum Cable Stub Length
d: Maximum Node Distance

Figure 6: CAN Nodes Connection Paradigm

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 6 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

4.0 CAN Transceiver
4.1 UT64CAN333x Transceiver (recommended) Connection

The UT32M0R500 CAN controllers transmit and receive data up to 1 Mbits/s; each CAN controller provides a simple
connection to the CAN UT64CAN333x transceiver (recommended) via CANx_TXD and CANx_RXD pins as shown in Table 3
and Figure 7 for CAN0 connection.

Table 3: CAN Module TX/RX Signal Pin

UT32M0R500 CAN
Controller 0

UT32M0R500 CAN
Controller 1 Description

CAN0_TXD CAN1_TXD Transmit Signal Pin

CAN0_RXD CAN1_RXD Receive Signal Pin

Figure 7: CAN0 Connection

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 7 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

4.2 UT64CAN333x Transceiver (recommended) Interface Connectors

There are several types of connectors used for CAN interface such as the 9-pin male D-sub, 10-pin header, RJ-Style, 7-pin
open style, etc. Among these connectors, the 9-pin male D-sub connector is most widely used and Table 4 shows the
pinout. The UT64CAN333x eval board (recommended) provided by Frontgrade uses the 9-pin male D-sub connector.

Table 4: 9-Pin Male DSUB Connector Pinout for CAN Bus

Pin # Signal names Signal Description
1 Reserved Upgrade Path

2 CAN_L Dominant Low

3 CAN_GND Ground

4 Reserved Upgrade Path

5 CAN_SHLD Shield, Optional

6 GND Ground, Optional

7 CAN_H Dominant High

8 Reserved Upgrade Path

9 CAN_V+ Power, Optional

5.0 CAN Controller
In this section, we will explain how the CAN’s priority and bitwise arbitration work, how to calculate CAN baud rate and how
acceptance filters work.

5.1 CAN Priority and Bitwise Arbitration

CAN protocol does not have a priority field. It uses the message ID and non-destructive bitwise arbitration to determine
which message has the highest priority. When the CAN ID bits are cleared, dominant bits, it has the highest priority and
when the bits are set, recessive bits, it has the lowest priority.

If all challenging message ID signals on the bus are synchronized and connected in a wired-AND circuit then the low ID’s bit
signal, the dominant bit, overwrites the high ID’s bit signal, the recessive bit. The high priority message ID overwrites the
low priority message ID causing all low priority nodes to terminate its transmission. This is how nondestructive bitwise
arbitration works with the cooperation of every node on the bus, see Figure 5.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 8 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

5.2 CAN Baud Rate

The BUS_TIMING_0 and BUS_TIMING_1 are the bus timing control registers, see Table 5-Table 6.

Table 5: Bus Timing Register 0 (BTR0), Offset 6

Table 6: Bus Timing Register 1 (BTR1), Offset 7

Bit # 7 6 5 4 3 2 1 0
R

SAM TSEG2 TSEG1
W

Reset 0 000 [00…0]

BUS_TIMING_0: SJW[7:6] are the Synchronization Jump Width bits; 0 for high-speed communication; BRP[5:0] are the Baud
Rate Prescaler bits.

BUS_TIMING_1: SAMP[7] bit; 1 sample three times, 0 sample once; TSEG2[6:4] Time Segment 2; TSEG1[3:0] Time Segment 1.

The clock period for individual bits is 2 * fsck * (BRP[5:0] + 1), where fsck is the system clock frequency.

The input bit is sampled at the time in between Segment 1 and Segment 2, see Figure 8.

Figure 8: CAN Input Bit Sample Point

Bit # 7 6 5 4 3 2 1 0
R

SJW BRP
W

Reset 00 [00…0]

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 9 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

There are three time segments: Segment 0, Segment 1 and Segment 2.

Segment 0 is one clock period: 2 * fsck *(BRP[5:0] + 1).
Segment 2 is TSEG2[6:4]; the length = fsck * (TSEG2[6:4] + 1).
Segment 1 is TSEG1[3:0]; the length = fsck * (TSEG1[3:0] + 2).
Then, to find the time for each bit, include all the segments:
 CAN_TS2_3tq = 2, /*!< 3 time quanta */
 CAN_TS2_4tq = 3, /*!< 4 time quanta */
Bit Time = 2 * fsck * (BRP[5:0] + 1) * (TSEG2[6:4] + 1 + TSEG1[3:0] + 2)
 = 2* (20ns)*(24+1)*(2 + 1 + 3 + 2)
 = 8usec
Or Bit Time = 1/8usec = 125Khz

5.3 CAN Acceptance Filters

The UT32M0R500 Can controller has the ability to filter incoming messages. It has Acceptance Code and Acceptance Mask
registers. The acceptance filter mode (AFM) bit chooses between 1: single acceptance filter or 0: dual acceptance filter. The
acceptance and mask registers are compared bit- by-bit with the incoming message and if the message and registers match,
then the microcontroller will read the message; otherwise, the message is discarded.

Masked bits set to 0 will be filtered and bits set to 1 will be accepted regardless of the ID bit value. For extended CAN
filtering information and CAN filtering examples, refer to App-Note-UT32M0R500-CAN-Filtering at
www.frontgrade.com/HiRel.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 10 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

6.0 CAN Controller Programming
The following sections show programming examples by making use of Frontgrade APIs for the UT32RM0R500.

6.1 BasiCAN Initialization

Code 1 initializes the CAN0 controller for BasiCAN and for specifics on the APIs, refer to www.frontgrade.com/HiRel.

Code 1: BasiCAN0 Initialization

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 11 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

6.2 Extended CAN Initialization

Code 2 initializes the CAN0 controller for Extended CAN and for specifics on the APIs, refer to www.frontgrade.com/HiRel.

Code 2: Extended CAN0 Initialization

For Keil MDK, under Preprocessor Symbols, define the preprocessor directive CAN_ENABLE_PELICAN_SUPPORT, see Figure 9.

Figure 9: Extended CAN Support Option

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 12 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

6.2.1 CAN0 Interrupt Initialization

CAN0 interrupt (IRQ) is mapped to number 16 in the Interrupt Vector Table. The address of interrupt 16 in the Interrupt
Vector Table is mapped to the CAN0_IRQHandler, which is the interrupt service routine (ISR). In the ISR, software must
check for which interrupt happened, see Code 3.

Code 3: CAN0 Receive Interrupt settings

6.3 Standard CAN Send Message (Data Frame Transmission)

Code 4 shows how to transmit a message. It begins by setting each of the fields in the message frame. The FrameFormat
sets the ID extended bit (IDE) to 0 for standard format; the 11-bit identifier (ID) set 0x111; remote transmit request (RTR)
bit set to 0 for data frame; data length code (DLC) bits set to 8 for eight bytes of data; eight bytes are copied into the data
field of the message; finally, by setting the TR bit to 1 in the command register, the message will start being transmitted out
on CANxTD line.

Code 4: Standard Can Data Frame Transmission

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 13 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

Figure 10 shows the timing diagram for transmitting a CAN data frame message and the node acknowledging it.

Figure 10: BasiCAN TX Message

6.4 PeliCAN Send Message (Data Frame Transmission)

Code 5 shows how to transmit a message. It begins by setting each of the fields in the message frame. The FrameFormat
sets the ID extended bit (IDE) to 1 for extended format; the 11-bit identifier (ID) set 0x111; remote transmit request (RTR)
bit set to 0 for data frame; data length code (DLC) bits set to 8 for eight bytes of data; eight bytes are copied into the data
field of the message; finally, by setting the TR bit to 1 in the command register, the message will start being transmitted out
on CANxTD line.

Code 5: PeliCAN Data Frame Transmission

Figure 11 shows the timing diagram for transmitting a CAN data frame message and the node acknowledging it.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 14 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

Figure 11: PeliCAN TX Message

6.4.1 CAN Receiving a Message

Code 6 shows how to receive a message. When the message has been received, the CAN_INT_RECEIVE flag is set and an
interrupt is requested. Inside the interrupt handler (ISR), the interrupt flag is cleared. The API provides a function for
copying 13 bytes from the CAN receive buffer into the RxMessage structure. The message includes ID, data length and data
from the specific slave device, see Figure 12-Figure 13. Once the information has been copied, the receive buffer is released
by writing 1 to RRB bit in the command register.

Code 6: CAN read byte(s)

Figure 12 shows the timing diagram for receiving a BasiCAN message.

Figure 12: BasiCAN receiving message from a Node

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 15 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

Figure 13 shows the timing diagram for receiving a PeliCAN message.

Figure 13: PeliCAN receiving message from a Node

Putting it all together, Code 7 shows the main subroutine for sending and receiving CAN0 frame message inside an endless
loop, and it shows The CAN0_IRQHandler, which is the interrupt service routine for handling the particular CAN interrupt.

Code 7: BasiCAN Example program

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 16 of 16

UT32M0R500
Arm Cortex M0+ CAN Unit APPLICATION NOTE

Version #: 1.0.0 8/14/2019

7.0 Summary and Conclusion
With excellent internal hardware for error signaling and retransmission, CAN is a high-integrity serial data communication
bus.

For more information about our UT32M0R500 microcontroller and other products, please visit our website:
www.frontgrade.com/HiRel.

Revision History
Date Revision # Author Change Description Page #

8/14/2019 1.0.0 JA Initial Release

Datasheet Definitions
 Definition

Advanced Datasheet Frontgrade reserves the right to make changes to any products and services described herein at any time
without notice. The product is still in the development stage and the datasheet is subject to change.
Specifications can be TBD and the part package and pinout are not final.

Preliminary Datasheet Frontgrade reserves the right to make changes to any products and services described herein at any time
without notice. The product is in the characterization stage and prototypes are available.

Datasheet Product is in production and any changes to the product and services described herein will follow a formal
customer notification process for form, fit or function changes.

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products
and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is
current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any
product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service
convey a license to any patents, rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.

