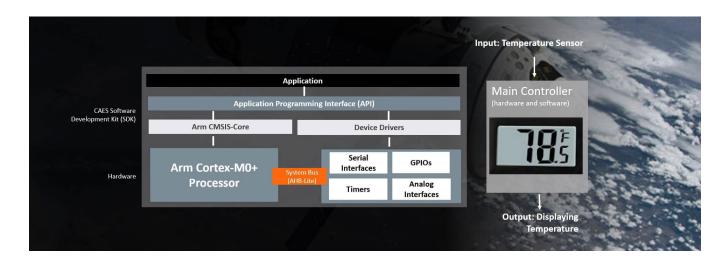
RONTGRADEAPPLICATION NOTE UT32M0R500

Embedded Systems Fundamentals with the UT32M0R500 Microcontroller

12/2/2022 Version #: 1.0.0

12/2/2022

Table 1: Cross Reference of Applicable Products


Product Name	Manufacturer Part Number	Smd #	Device Type	Internal Pic Number
Arm Cortex M0+	UT32M0R500	5962-17212		Q\$30

Overview

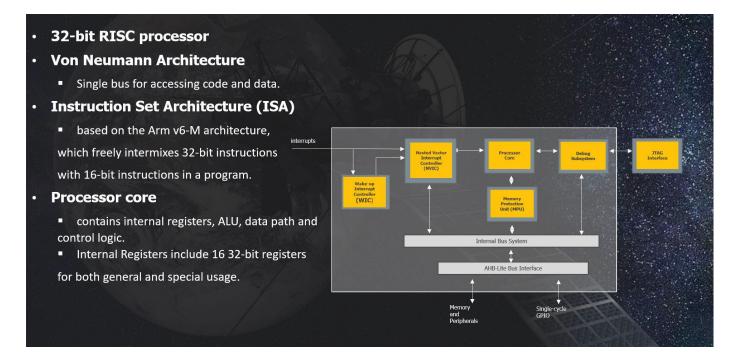
This app note gives an introduction to embedded systems, then goes over the processor architecture, the different microcontroller peripherals, software development kit or **SDK**, and finally an application.

The picture shows an embedded system with an input, an output and a main controller. The input reads a signal from a temperature sensor, the output writes a value to the LCD displaying the temperature in degrees Fahrenheit, and the main controller performs the specific task with hardware and software.

The picture on the left expands the UT32MOR500 microcontroller into hardware and software. The hardware shows the processor and different peripherals. The software starts with the ARM CMSIS core, which are drivers for the processor core and to the right of it are drivers for the different peripherals; on top of the drivers, the picture shows the application programming interface or API, which has function calls for the different device drivers; and finally, the program application puts everything together.

12/2/2022

Version #: 1.0.0

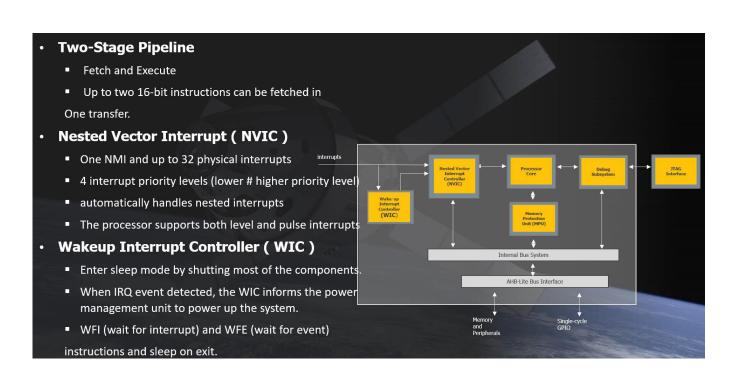

Cortex M0+ Processor Architecture

Overview

The ARM Cortex-M0+ is a 32-bit RISC processor, with Von Neumann architecture, which means single bus for accessing code and data.

The instruction set architecture or ISA is based on the ARMv6-M architecture, which freely intermixes 32 and 16-bit instructions in a program.

The processor core contains internal registers, ALU, data path and control logic. The internal registers include 16 32-bit registers for both general and special purposes.


The processor is a two-stage pipeline: execute and fetch and can fetch up to two 16-bit instructions in one transfer.

The nested vector interrupt or **NVIC** has one non-maskable interrupt or **NMI** and up to 32 physical interrupts with four priority levels, the lower the number, the higher the priority level. The NVIC automatically handles nested interrupts. The processor supports both level and edge-triggered interrupts.

The wakeup interrupt controller or **WIC** enters sleep mode by shutting most of the components. When an IRQ event is detected, the WIC informs the power management unit to power up the system. It uses WFI (wait for interrupt), WFE (wait for event) instructions and sleep on exit.

12/2/2022

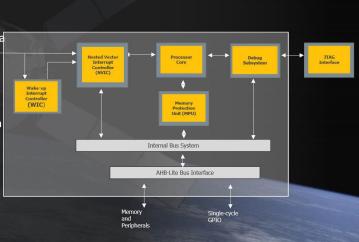
Version #: 1.0.0

The bus interconnect is a 32-bit AMBA-3 AHB-lite interface for integrating memory and peripherals.

The debug subsystem handles debug control, program breakpoints, and data watchpoints. It has a JTAG port which uses the Keil ARM ULINK2 Debug Adapter for programming and debugging applications.

The processor has a memory protection unit or **MPU** with 8 regions, subregions and a background region.

Finally, the processor has the micro trace buffer or **MTB** for tracing instructions.


Bus Interconnect

• 32-bit AMBA-3 AHB-lite system interface

for integrating memory and peripherals

Debug Subsystem

- handles debug control, program breakpoints, and data watchpoints
- JTAG port uses the Keil ARM ULINK2 Debug Adapter
- Memory Protection Unit (MPU)
 - 8 region MPU with subregions and background region
- Micro Trace Buffer (MTB)
 - Micro trace buffer for tracing instructions.

Registers

The internal registers are the workhorse of the processor. The processor has 13 general purpose registers **(R0-R12)** plus special registers. Most instructions can specify a general-purpose register.

Register 13 is the stack pointer or **SP.** The SP is 4-byte align. Main stack pointer or **MSP** is for applications that require privilege access while process stack pointer or **PSP** is not.

General-purpose Registers (R0-R12)	Registers		Ф 🔣
General-purpose Registers (RU-R12)	Register	Value	
The general-purpose registers have no special use	Core		
 Most instructions can specify a general-purpose register 	RO	0x20017866	
	R1	0x20017856 0x00000000	
Stack Pointer (SP) Register 13	R3	0x20017864	Carlos Contraction
		0x0000000	and the second second
 Main Stack Pointer (MSP) 	R13 (SP)	0x20017868	
MSP is used in applications that require privilege access	R14 (LR)	0x2000023D	P. Sandara
	R15 (PC)	0x20000174	
 Handler Mode always uses MSP 	€ xPSR	0x61000000	S.S.
Drocoss Stack Dointer (DSD)	Banked		100 20 30
 Process Stack Pointer (PSP) 	MSP	0x20017868	10
Thread Mode can use either MSP or PSP	PSP	0x00350540	
	System	0	
 Stack Pointer (SP) is 4-byte aligned 	CONTROL	0×00	
	E-Internal		
	Mode	Thread	1. 11
	Privilege	Privileged	
	Stack	MSP	111.12

Register 15 is the program counter or **PC.** PC holds the address of the current instruction and instructions can be either 32 or 16-bit.

Register 14 is the link register or **LR**. The LR receives the return address from the **PC** when a Branch and Link **(BL)** or Branch and Link with Exchange **(BLX)** instruction is executed.

	Registers	4
Program Counter (PC) Register 15	Register	Value
 PC holds the address of the current instruction that is fetched 	Core R0 R1	0x20017866 0x20017856
 Instructions are either 32-bit or 16-bit 	R2 R3	0x00000000 0x20017864
 Link Register (LK) Register 14 	R12 R13 (SP)	0x00000000 0x20017868
 The LR receives the return address from PC when a Branch and Link (BL) or Branch and Link with 	R14 (LR) R15 (PC) ⊕ xPSR	0x2000023D 0x20000174 0x61000000
Exchange (BLX) instruction is executedThe LR is also used for exception return	Banked MSP PSP	0x20017868 0x00350540

12/2/2022

Version #: 1.0.0

Program status register or **PSR** combines the application, interrupt and execution registers into one. The application register has the flags **n**, **z**, **c** and **v**; the interrupt register has the **ISR** number; and the execution register is always in thumb state for the ARM Cortex M0+ processor.

•	• Special Registers: Program Status Register (PSR)	
	 The Program Status Register (PSR) combines the Application Program Status Register (APSR), Interrupt Program Status Register (IPSR) and the Execution Program Status Register (EPSR) 	
	 Application Program Status Register (APSR) 	
	N: negative flag- set to 1 if the result from the ALU is negative	
	Z: zero flag- set to 1 if the result from the ALU is zero	
	C: carry flag- set to 1 if an unsigned overflow occurs	
	V: overflow flag- set to 1 if a signed overflow occurs	State Carl
	 Interrupt program Status Register (IPSR) 	
	ISR Number: current ISR number	
	 Execution program Status Register (IPSR) 	
	T: Thumb State	1 Dep
	BIT # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
	PSR N Z C V T ISR Num	ber state and state

The **PRIMASK** register either enables or disables all interrupts. The **CONTROL** register selects the SP and determines whether the SP is privilege or not.

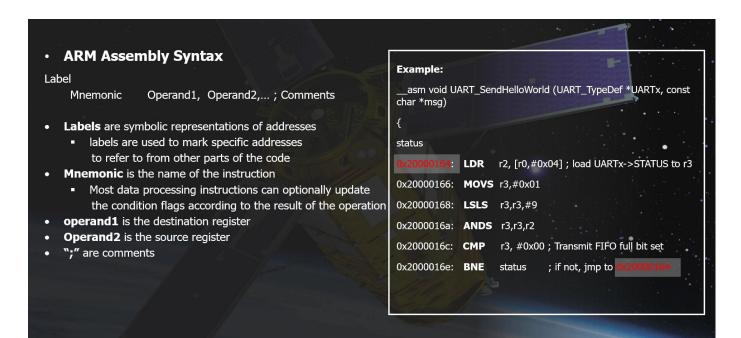
 Special Registers: Interrupt Mask Register (PRIMASK) Bit 0: set to 1 disables all interrupt Access using CPS, MSR and MSR instructions 	
BIT # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PRIMASK PRIMASK	
 Special Registers: Control Register (CONTROL) Bit 0: nPRI flag 	
 Determines whether thread mode is privileged (0) unprivileged (1) Bit 1: SPSEL flag 	
 Selects SP when in thread mode MSP (0) or PSP (1) 	
BIT # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CONTROL SP	

12/2/2022

Version #: 1.0.0

Armv6-M Architecture

The instruction set architecture or ISA is based on the ARMv6-M architecture profile. The picture shows that most instructions are 16-bit instructions while only a few instructions are 32-bit instructions. Thumb-2 freely mixes 32 and 16-bit instructions, and the ARMv6-M supports Thumb-2 technology.


ARMv6-M Architecture	Profile										
 ARM instruction set supp 	 ARM instruction set supports 32-bit instructions. 										
 Thumb-1 instruction set s 	Thumb-1 instruction set supports 16-bit instructions										
 Thumb-2 freely mixes 32 	 Thumb-2 freely mixes 32-bit instructions and 										
16-bit instructions	16-bit instructions										
 ARMv6-M architecture su 	upports T	humb-2	technolo	ogy							
	16-Bit Thumb Instructions Supported on Cortex-M0+										
	ADCS	ADDS	ADR	ANDS	ASRS	В	BIC	BLX	ВКРТ	BX	
	CMN	CMP	CPS	EORS	LDM	LDR	LDRH	LDRSH	LDRB	LDRSB	
	LSLS	LSRS	MOV	MVN	MULS	NOP	ORRS	POP	PUSH	REV	
	REV16	REVSH	ROR	RSB	SBCS	SEV	STM	STR	STRH	STRB	
	SUBS	SVC	SXTB	SXTH	TST	UXTB	UXTH	WFE	WFI	YIELD	
										_	
	32-Bit T	humb-2 In	structions	Supported	on Cortex	-M0+					
	BL	DSB	DMB	ISB	MRS	MSR					

12/2/2022

Version #: 1.0.0

Arm Assembly Syntax

Continuing with the **ISA**, the picture shows the ARM assembly syntax. **Labels** are on the left, followed by **mnemonic**, **operands** and finally a ";" is for comments. **Labels** are a symbolic representation of an address (the picture shows the "loop" label representing address **0x20000164**). **Mnemonic** is the name of the instruction (the picture shows the instructions highlighted in bold). Finally, **operands** are registers.

Arm Branch Instructions

Branch instructions BL, BLX and BX are subroutine instructions. When a subroutine is called, the assembly program uses the BL instruction. The BL instruction loads the LR with the address following the BL instruction and loads the PC with the address of first instruction of the subroutine. Finally, when returning from the subroutine, the "BX LR" loads the PC with the address loaded in the LR, and the main program resumes execution after the function call.

•	Branch Instructions		
•	ARMv6-M only supports thur	nb execution.	
	 B BL branch and link (immediate) calls a su BLX calls a subroutine at an address and Specified by a register BX cause a branch to an address and inst 	I instruction set	•
	NB C	Control OTIGER_CAREFING (DETINES, TIDERS); 001000 000000140 JAO 000000140 JAO 000000140 JAO 0x200000140 JAO 000000140 JAO 000000140 JAO 0000000140 JAO 0x200000140 4000 LDR FD, (ED, FMA) # EMADOCOUNDE 0x200000140 4000 LDR FD, (ED, FMA) # EMADOCOUNDE 0x200000140 FFFFFFFFF NL.W FD, (ED, FMA) # EMADOCOUNDE 0201 TIMERTICKEND(STERTICE) (De200000140) 0201 TIMERTICKEND(STERTICE) (De200000140)	- F9 -> 752881110; - R1 -> 50200054 - R1 -> 50200000 - R1 -> 502000000 - R1 -> 50200000000000000000000000000000000000
		Return from Function	R13(5P) 0-20017858 R14(3P) 0-2000088 B16(6P) 0-2000088 R16(6P) 0-2000088 R16(6P) 0-2000088 R16(6P) 0-2000088

12/2/2022

Memory Map

The ARM Cortex-M0+ **memory map** has **4 GB** of address space. The processor is separated into fixed regions. Hex 0x00_000_000 to hex 0x20_000_000 minus one is the code region. This region has both boot ROM and NOR Flash.

From hex 0x20_000_000 to hex 0x40_000_000 minus one is the SRAM region. Starting from hex 0x40_000_000 is the peripheral region.

And finally, starting from hex 0xE0_000_000 is the processor internal components region.

- The Arm Cortex-M0+ Memory Map describes the organization of the processor's address space. The address space contains the regions of Armv6-M architecture
- The 32bit system has 4GB of memory space
- It is separated into regions with different functionality

	System	System ROM, MTB,	
0xE010_0000	System	etc.	
	Private	NVIC, SCS, etc.	
0xE000_0000	Peripheral Bus	ivvic, scs, etc.	
	Reserved		
0x4002_0000	AHB Peripherals	- 0 + i i- h i-	
0x4000_0000	APB Peripherals	On-chip peripherals	
	Reserved		
0x2000_0000	SRAM	96KB of progam code and data	
	Reserved		
0x0100_0000	NOR Flash	NOR Flash 64KB window	
	Reserved		
0x0000_0000	Boot ROM	32KB Boot ROM	

Code Region: Bootloader

The bootloader is stored in on-chip ROM at manufacture time. It has 4 boot modes: in mode 0, the bootloader loads an image from Flash to SRAM and jumps to the image to start program execution. Mode 2 and 3 are for loading/updating an image over UARTO and CANO respectively. For these modes, after loading/updating the image, the user needs to set mode 0 and reset the device for changes to take effect.

- The bootloader is stored in on-chip ROM
- It is programmed into the chip at manufacture time

• The bootloader copies an executable image from NOR Flash into SRAM and jumps to the image.

Boot mode	selection pins	Boot	Description	
BOOTCFG1	BOOTCFG0	Mode	Description	
0	0	0	Load image from internal Flash memory into SRAM and execute	
0	1	1	Reserved	
1	0	2	Load/Update image over UART0 into flash (reset required)	
1	1	3	Load/Update image over CAN0 into flash (reset required)	

Version #: 1.0.0

12/2/2022

Flash Program Image(s)

From before, using mode 2 and 3, the bootloader can load/update up to 4 images to Flash. Each program image is 90 KB with a 2-byte CRC.

- The NOR Flash is an 8MB of on-chip flash memory.
- Up to 4 program images can be programmed into it.
- Each image can be loaded/updated via UART0 or CAN0 interfaces.
- Each program image has two sectors of 64KB each.
- The maximum program image size is 90KB or 0x167FE (0x16800 2 bytes for CRC).

NOR Flash	Sector			
	141			
	140			
	T			
	17	Offset	NOR Flash	Sector
Image override	16		Unused	64 KB
Image 3	14	0x0002_67FE	CRC (2 bytes)	6 2
Image2	12	0,0002_0000	Image 0 (90 KB)	64 KB
Image 1	10	0x0001_0000		8 64
Image 0				
	7			
	6			
	0			
	 Image override Image 3 Image 2 Image 1	141 140 17 Image override 16 Image 3 14 Image 2 12 Image 1 10 Image 0 8 7 6 5 4 3 2 1	141 140 141 140 17 Offset Image override 16 Image 3 14 0x0002_67FE Image 1 10 0x0001_0000 Image 0 8 7 6 5 4 3 2 1 1	141 140 141 140 17 Offset NOR Flash Image override 16 Unused Image 3 0x0002_67FE CRC (2 bytes) Image 1 0x0001_0000 Image 0 Image 0 8 7 6 5 4 3 2 1

SRAM Program Image

SRAM has the program image with a total of 96 KB for code and data. The program image contains the vector table, startup routine, application code, data and C library functions. After reset, the processor reads the MSP value, which is the address of the beginning of the stack, then it reads the reset vector, which jumps to the beginning of the program and execution starts from there line by line.

 the total RAM memory is 96KB for borcode and data. The program image contains: Vector Table Start-up routing Application code and data C library functions 	th				
			Non Maskable Int_IRQn		
	SRAM	/	HardFault_IRQn		
		/	SVCall_IRQn		
		/	PendSV_IRQn		
	Start-up Routine	/	SysTick_IRQn	State and the second second	
Program	Program Code		Cortex-M0+ 32 external interrupts		
Image	C Library Code	/	MBEA_IRQn		
	C Library Code	/	DUALTIMER0_IRQn		
		(DUALTIMER1_IRQn	Manufacture of the second	
	/		PWM_IRQn		
	Vector Table		RTC_IRQn	And a state of the local division of the loc	
0x20000000			°		

12/2/2022

12/2/2022

UT32M0R500 Peripherals

UART

Version #: 1.0.0

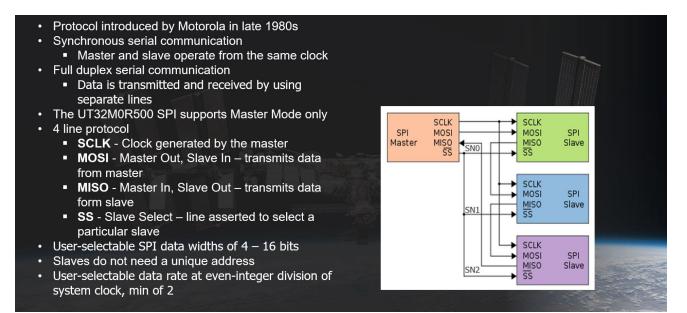
Peripherals include serial interfaces, GPIO's, timers and analog interfaces. Starting with serial interfaces, the first **UART** was designed by Gordon Bell of DEC in 1960s. it has separate transmit and receive wires. The UART implements asynchronous serial communication (no clock needed, but devices must have the same baud rate) and uses FIFO queues to speed up communication. The UART is often used for early software debugging by printing values to a **Terminal** using **printf()**.

- First UART was designed by Gordon Bell of DEC in 1960s
- Separate transmit and receive wires
- UARTs implements asynchronous serial communication from parallel data (sender does not have to send a clock signal)
- Used for serial communication with buffering FIFO queues to speed communications
- The UT32M0R500 uses the UART for the serial console, but it can be used for other applications

The message starts with first, the Start bit by driving the tx line low for one clock cycle. Second, data is transmitted in the next 8 clock cycles bit by bit with optionally sending the parity bit in the 9 clock cycle. Finally, the stop bit by pulling the tx line high to end the transmission

UART Message Format

- 1. Start bit, data starts by driving the tx line low for one clock cycle.
- 2. Data, in the next 8 clock cycles, the transmitter sends 8 bits sequentially (parity is for transfer reliability, but it is optional).
- 3. Stop bit, transmission ends by pulling the tx line high.


Start Bit X Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Parity Stop Bit

Version #: 1.0.0

12/2/2022

SPI

SPI Protocol was introduced by Motorola in late 1980s. the SPI is full duplex Synchronous serial communication. Master and slave operating from the same clock with User-selectable data rate at even-integer division of system clock. The UT32M0R500 SPI supports Master Mode only with user-selectable data widths of 4-16 bits.

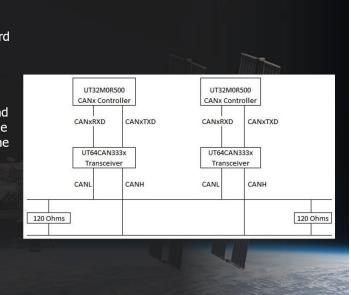
The SPI has 4 different clock modes: in Mode 0, the clock starts low and data is sampled on the leading rising edge of the clock; in mode 1, clock starts low and data is sampled on the trailing falling edge of the clock; in mode 2, clock starts high and data is sampled on the leading falling edge of the clock; and in mode 3, clock starts high and data is sampled on the trailing rising edge of the clock.

SPI Clock Mo	des			
	ss			
SCLK (CPOL=0, CP	iA=0)			
SCLK (CPOL=0, CF	HA=1			1
SCLK (CPOL=1, CP	IA=0)			
SCLK (CPOL=1, CP	IA=1)			
	ю Bit 0 Bit	Bit 2	Bit 3 Bit 4 Bit 5 Bit 6 Bit 7	
Clock Pe	larity and Phase	SPI	Data Sampling	
CPOL	СРНА	Mode	Data Sampling	
0	0	0	Leading rising edge of the clock	
0	1	1	Trailing falling edge of the clock	
1	0	2	Leading falling edge of the clock	
1	1	3	Trailing rising edge of the clock	

The message starts with first, driving SS line low to the corresponding slave. Second, slave transmits data on the MISO line one bit per clock. Finally, the master receives the data bit by bit and ends the transaction by pulling the SS line high.

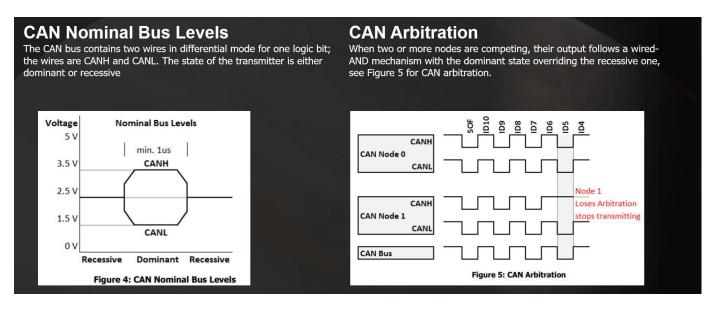
1. Ma 2. Th 3. Th	e slave trans	the corresponding slave by pulling SS line low mits data on the MISO line one bit per clock eives the data bit by bit and ends the transaction	
	cs	3	
	SCLK		
	MOSI	1 1 2	
	MISO	Image: High Impedance Image: High Impedance	

Version #: 1.0.0

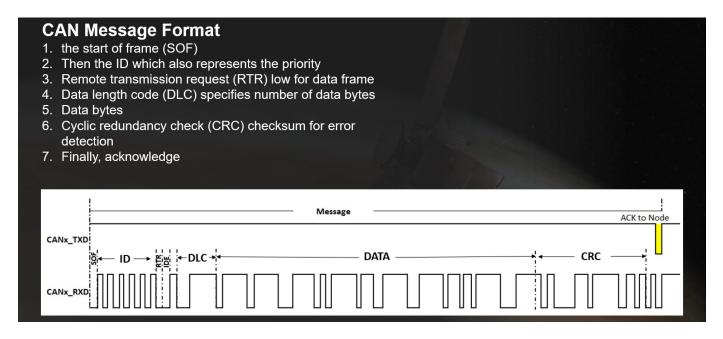

12/2/2022

CAN

CAN was initially developed by Bosh Corporation for automobiles, but since then, it has been used in industrial automation and control applications. The protocol is part of the ISO 11989 standard. CAN has a max speed of 1 Mbit/s with Master/Slave half-duplex communication, and nodes have unique address bits with 7 or 11 bit addresses to identify devices (nodes).


CAN operates at data rates of up to 1 Mbits/s. Master controls the bus and addresses a particular slave for communication. Transceiver uses 120 Ohms. Resistors pull up lines to VCC while Open-collector pulls lines down to GND.

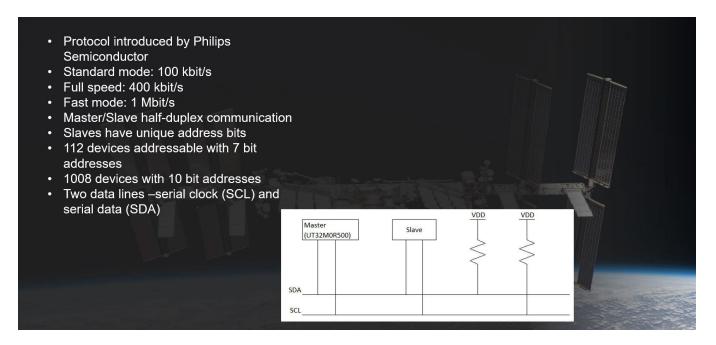
- Developed by Bosch Corporation for automobiles
- The CAN protocol is part of the ISO 11989 standard
- Max speed: 1 Mbit/s
- Master/Slave half-duplex communication
- Nodes have unique address bits
- 11 or 29 bit addresses to identify devices (nodes)
- The CAN system consists of the bus with CANH and CANL wires terminated with 120 Ohm resistors, the UT64CAN333x transceiver (recommended), and the UT32M0R500 CAN controller



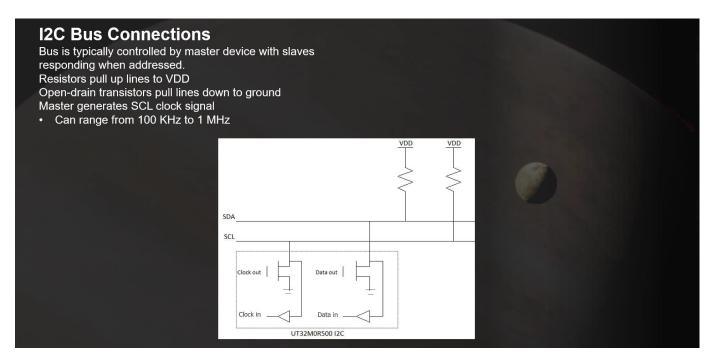
12/2/2022

The CAN bus contains two wires in differential mode for one logic bit; the wires are CANH and CANL. The state of the transmitter is either dominant or recessive. When two or more nodes are competing, their output follows a wired-AND mechanism with the dominant state overriding the recessive one.

The message starts with first, sending the start of frame (SOF) low. Second, the node sends the arbitration field which consist of an 11-bit identifier which also determines the priority of the message when nodes contend for the bus and data frame message type. Third, the node sends IDE low for basic mode. Fourth, DLC specifies the number of bytes. Then, the actual data up to 8 bytes followed by a 15-bit CRC for error detection. Finally, the controller sends an ACK when correctly receiving the message.

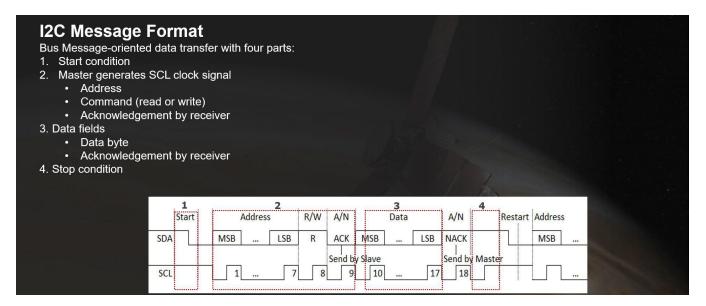


Version #: 1.0.0

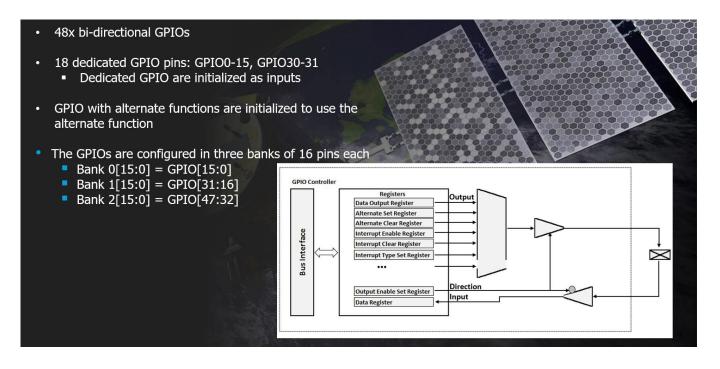

12/2/2022

I2C

I2C Protocol was introduced by Philips Semiconductor. the UT32M0R500 I2C has standard mode, full speed and fast mode with 100, 400 Kbits/s and 1 Mbit/s respectively. Communication is Half duplex with two data lines SCL and SDA. The Slave has unique address bits for identification.

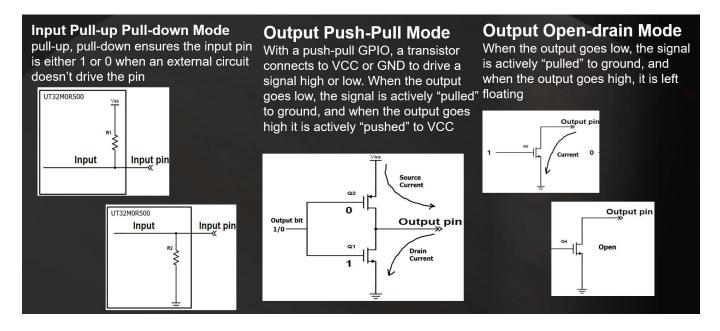

I2C operates at data rates of up to 1 Mbits/s with the master generating the clock signal. The master controls the bus and addresses a particular slave for communication. Resistors pull up lines to VDD while Open-drain pulls lines down to GND.

12/2/2022


Version #: 1.0.0

The message starts with first, a start condition, which is generated by pulling SDA low. Second, the next 7 bits are for addressing a particular device. The 8th bit indicates a read or write mode by the master. In write mode, the slave will receive data from the master; In read mode, the slave will send data to the master. Every byte is finished with a 9th acknowledge bit. Finally, the master ends the transaction by pulling SCL and SDA line high.

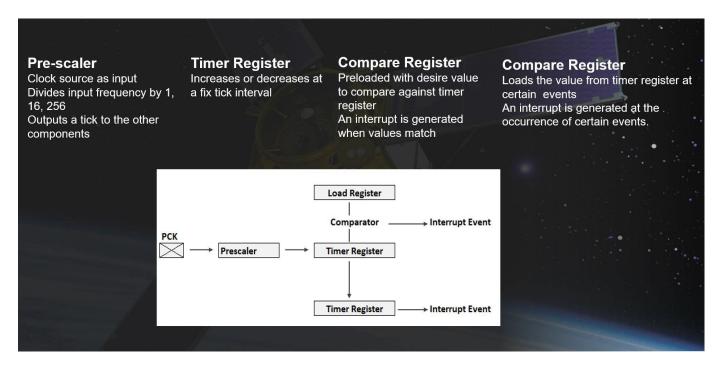
GPIO


The UT32M0R500 has 48 bi-directional GPIO's with 18 dedicated GPIO's initialized as inputs. GPIO's with alternate functions are initialized to use the alternate function. The GPIO's are configured in three banks of 16 pins each.

12/2/2022

Version #: 1.0.0

Inputs are in either pull-up or pull-down mode to ensure the input pins are either 1 or 0 when an external circuit doesn't drive the pin. **Outputs** are in either push-pull mode or open-drain mode. In push-pull mode, the output is either 1 or 0 and in open-drain, the output is pull low to ground or left floating (High-Z).

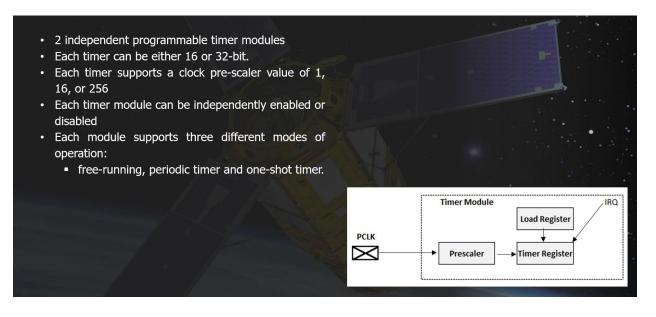


Version #: 1.0.0

12/2/2022

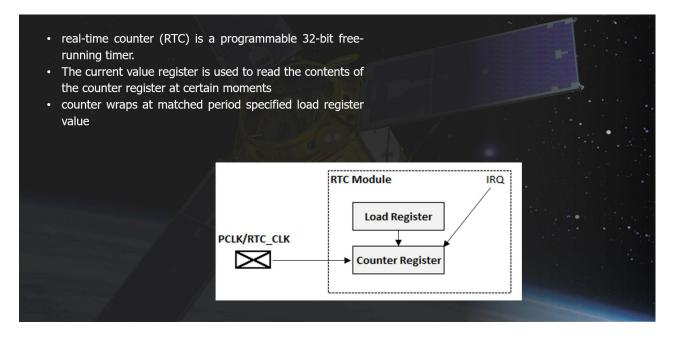
Timers

A **Timer** is a counter with a tick as the basic time unit and generates an interrupt when it reaches a predefined value. It has four main components: pre-scaler, compare register, timer register and capture register. A pre-scaler divides the system clock by a predefined value either 1, 16, 256 and outputs the timer tick. A timer register increases or decreases to a specified number of ticks. A compare register is preloaded with a desired value and if it matches the timer register value, an interrupt is generated. A capture register takes a snapshot of the timer register at certain moments in time.



12/2/2022

Version #: 1.0.0


Timers: Dual Timers

The UT32M0R500 timers consist of dual timers, real-time counter (RTC), watchdog and PWM. For dual timers, each timer can be either 16 or 32-bit with a clock pre-scaler value of 1, 16, or 256 and supports three different modes of operation: free-running, periodic timer and one-shot timer.

Timers: Real Time Counter (RTC)

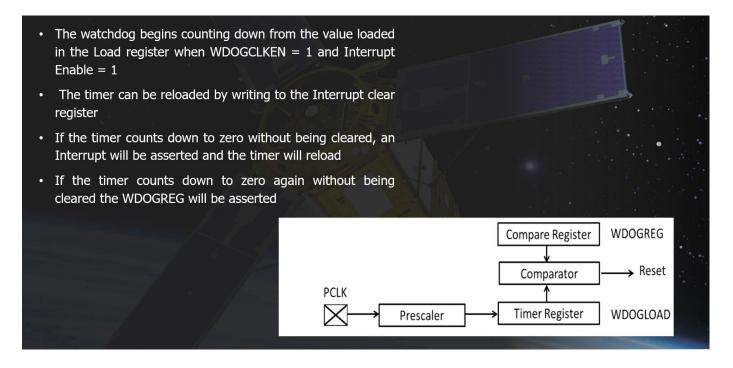
The real-time counter (RTC) is a programmable 32-bit free-running timer. The current value register is used to read the contents of the counter register at certain moments in time, and the counter wraps at matched period specified by the load register value.

12/2/2022

Version #: 1.0.0

Timers: PWM

Each **PWM** controller can have a single output, or the three controllers can be combined to form two-paired outputs. Each PWM device is configured as a 16-bit channel, programmable dead-band scaler, programmable clock scaler, and all three devices have a single combined Interrupt.

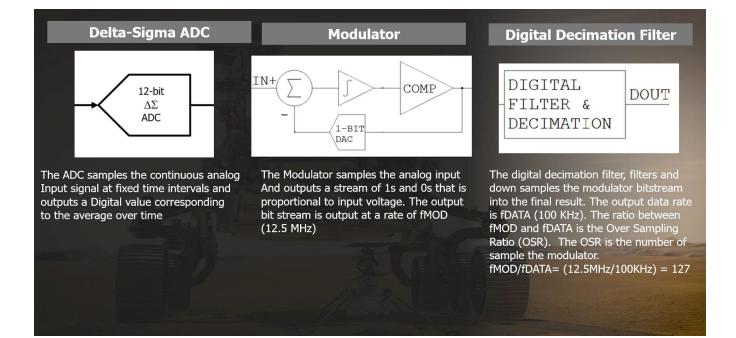

- 1 pulse width modulation (PWM) module with three separate controllers.
- Each PWM controller can have a single output, or the three controllers can be combined to form two-paired outputs.
- Each PWM device is configured as a 16-bit channel.
- Each PWM device includes a programmable dead-band scaler with a range from 20ns to 81,920ns, programmable clock scaler for a max 332ms pulse, and all three devices have a single combined Interrupt.

. •0		12			
PCLK	PWM Module				 PWM
	PRESCALER_0	► PWM_PER_0	→ PWM_COMP_0	→ PWM_DBCOMP_0	
-	PRESCALER_1	► PWM_PER_1	PWM_COMP_1	PWM_DBCOMP_1	→⊠
	PRESCALER_2	• PWM_PER_2	→ PWM_COMP_2	PWM_DBCOMP_2	 →⊠
					\rightarrow

Version #: 1.0.0

Timers: Watchdog

The **watchdog** begins counting down from the value loaded in the Load register. The timer can be reloaded by writing to the Interrupt clear register. If the timer counts down to zero without being cleared, an Interrupt will be asserted and the timer will reload. If the timer counts down to zero again without being cleared, the wdog output pin will be asserted.


```
4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com
```

12/2/2022

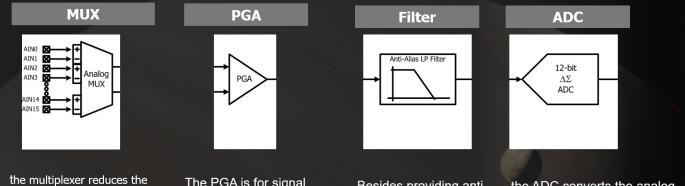
ADC

The **Delta-sigma ADC** samples the continuous analog Input signal at fixed time intervals and outputs a Digital value corresponding to the average over time. The ADC has two main components: the modulator and the digital decimation filter. The **Modulator** samples the analog input and outputs a stream of 1s and 0s that is proportional to input voltage. The output bit stream is output at a rate of fMOD (12.5 MHz as the default value).

The **digital decimation filter,** filters and down samples the modulator bitstream into the final result. The output data rate is fDATA (100 KHz as the default value). The ratio between fMOD and fDATA is the Over Sampling Ratio (OSR). The OSR is the ratio between fMOD and fDATA which the default value is (12.5MHz/100KHz) = 127.

12/2/2022

Version #: 1.0.0


ADC: Analog Interface

The Delta-sigma ADC input signal chain consist of a multiplexer, programmable gain amplifier (PGA), anti-aliasing low pass filter, and ADC. The **multiplexer** reduces the number of ADC components, switches the respective analog input and makes it available for conversion. It provides 16 analog inputs which can be configured single-ended, or up to 8 differential input pairs, or a combination.

Next, The **PGA** is for signal conditioning with selectable gain of 0.5, 1, 2, 4, 8, or 16 V/V. The gain setting is independently programmed per analog input channel.

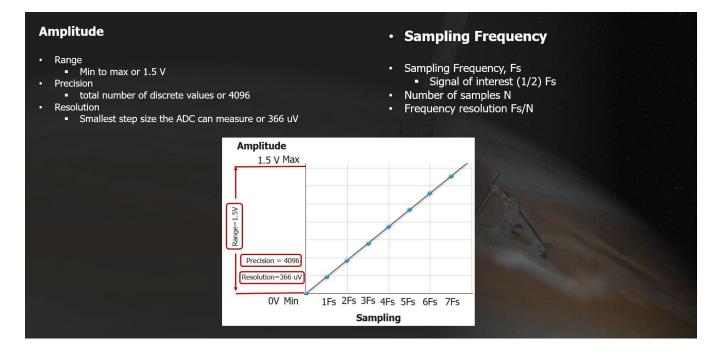
Besides providing **anti-aliasing filtering**, the low pass filter helps keep both the input to the ADC stable and external drive circuitry stable.

Finally, as stated before, the ADC converts the analog signal into a digital value.

number of ADC components. The multiplexer switches the respective analog input and makes it available for conversion and provides 16 analog inputs which can be configured singleended, or up to 8 differential input pairs, or a combination. The PGA is for signal conditioning with selectable gain of 0.5, 1, 2, 4, 8, or 16 V/V. The gain setting is independently programmed per analog input channel

Besides providing antialiasing filtering, the low pass filter helps keep both the input to the ADC stable and external drive circuitry stable.

the ADC converts the analog signal into a digital value

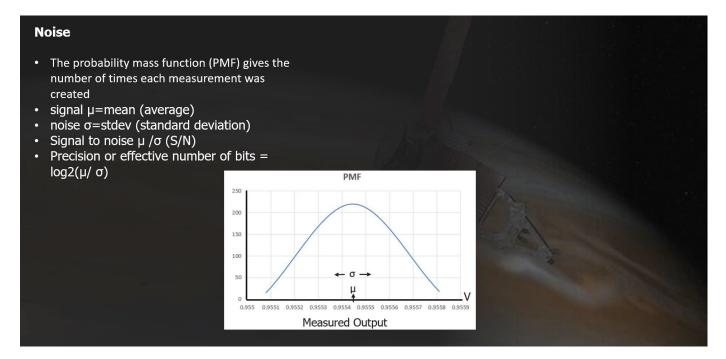

12/2/2022

Version #: 1.0.0

ADC: Sampling

The ADC converts an analog signal that is continuous in time and amplitude to something discrete both in time and amplitude, so the discrete value will be an approximation to the analog signal. **Amplitude** is defined in terms of range, precision, and resolution. The Range is the Min to max or 1.5 V for ADC single-ended channels; Precision is the total number of discrete values or 4096 for the ADC; and resolution is the smallest step size the ADC can measure or 366 uV.

In terms of **sampling**, the ADC defines the sampling frequency, number of samples and frequency resolution. Sampling frequency is defined as the minimum frequency that signals can be sampled without violating the Nyquist theorem, which states that if we sample at 2Khz, the maximum signal we can represent is 1KHz. Frequency resolution is defined as the sampling frequency/number of samples. For instance, if we have a buffer size of 8, N=8, then the frequency resolution is 1KHz.

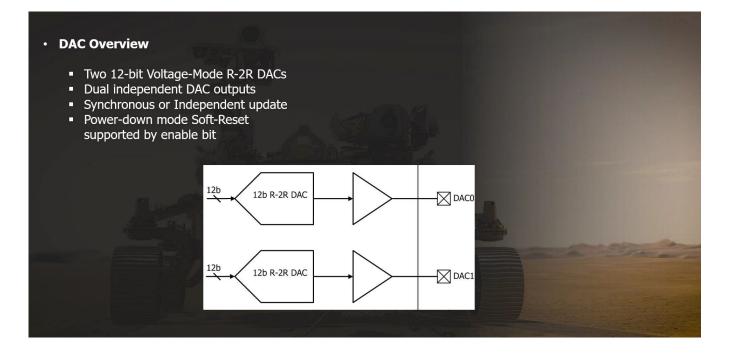


Version #: 1.0.0

12/2/2022

ADC: Noise

Noise is best explained by looking at a probability mass (PMF) function. The PMF gives the number of times each measurement was created. From the graph, the average or mean is the signal and the standard deviation is the noise. Comparing the average with the standard deviation, we get the signal-to-noise, which is the ratio of the amplitude of the signal relative to the noise. Now if we take the log base 2 of mu and sigma, we'll get the equivalent number of bits associated with the noise, and if the system is too noisy, in some cases, the resolution of a noisy conversion system can be improved by averaging.

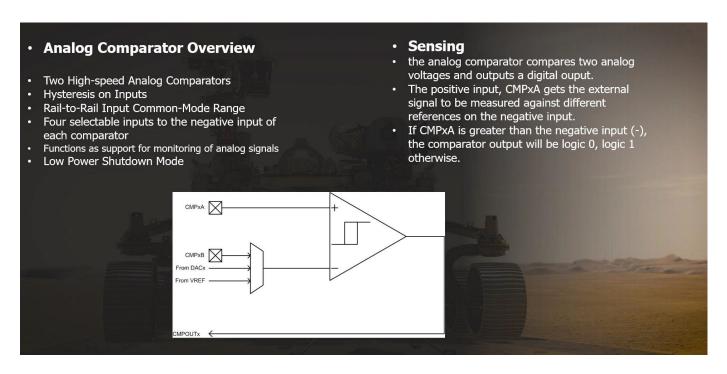


Version #: 1.0.0

12/2/2022

DAC

The **DAC** has similar parameters to the ADC. The DAC has two 12-bit Voltage-Mode R-2R DACs; dual independent DAC outputs; synchronous or Independent update; and power-down mode is supported.


12/2/2022

Version #: 1.0.0

Analog Comparator

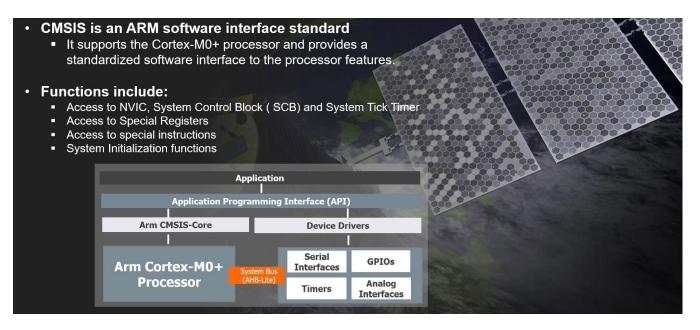
The UT32M0R500 has two High-speed Analog Comparators with Hysteresis on Inputs and Rail-to-Rail Input Common-Mode Range; Four selectable inputs to the negative input of each comparator.

For Sensing, the analog comparator compares two analog voltages and outputs a digital value. The positive input, CMPxA gets the external signal to be measured against different references on the negative input. If CMPxA is greater than the negative input (-), the comparator output will be logic 0, logic 1 otherwise.

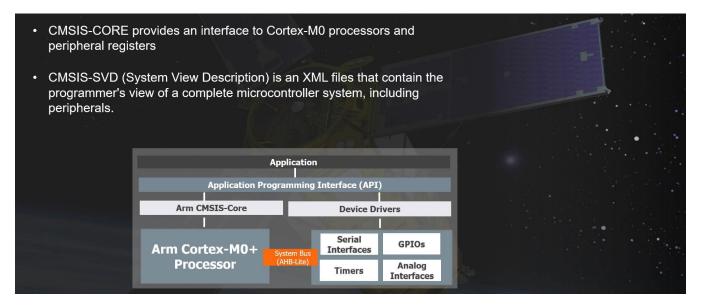
12/2/2022

Frontgrade Software Development Kit (SDK)

Frontgrade Software Development Kit (SDK) includes:


- ARM Cortex Microcontroller Software Interface Standard (CMSIS).
- Software Drivers.
- and Application Peripheral Interface (API).

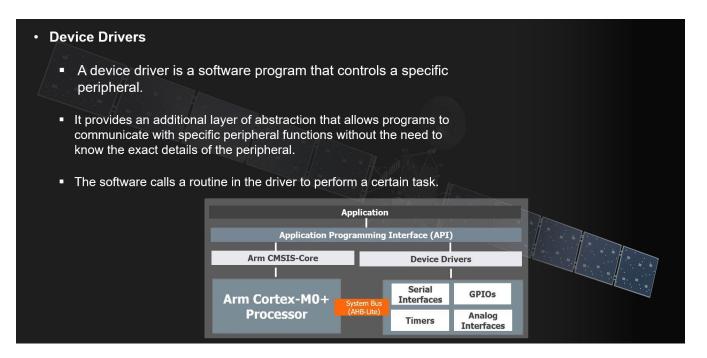
Besides the SDK, the app note goes over UT32M0R500 Evaluation Board, then the ARM Keil Microcontroller Development Kit (MDK), which is an Integrated Development Environment **(IDE)** that contains Compiler, Editor, Debugger and other Tools, and finally, a program application.


CAES Software Development Kit (SDK)						
ARM Cortex Microcontroller Software Interface Standard (CMSIS)						
Software Drivers						
 Application Peripheral Interface (API) 						
UT32M0R500 Evaluation Board						
ARM Keil Microcontroller Development Kit (MDK)		State Carling				
 The MDK is an Integrated Development Environment (IDE) 	Appli	ication				
The IDE contains Compiler, Editor, Debugger and other Tools	Application Program	nming Interface (API)				
Program Application	Arm CMSIS-Core	Device Drivers				
		B-Lite) Serial GPIOs Interfaces Analog Timers Analog Interfaces				

Cortex Microcontroller Software Interface Standard (CMSIS)

Cortex Microcontroller Software Interface Standard (CMSIS) is an ARM software interface standard. It supports the Cortex-M0+ processor and provides a standardized software interface to the processor features. **Functions** include: Access to NVIC, System Control Block (SCB) and System Tick Timer; Access to Special Registers; Access to special instructions; and System Initialization functions;

CMSIS-CORE provides an interface to Cortex-M0+ processors and peripheral registers. **CMSIS-SVD** (System View Description) is an XML file that contains the programmer's view of a complete microcontroller system, including peripherals.



12/2/2022

Device Drivers

A **device driver** is a software program that controls a specific peripheral. It provides an additional layer of abstraction that allows programs to communicate with specific peripheral functions without the need to know the exact details of the peripheral. The software calls a routine in the driver to perform a certain task.

12/2/2022

Version #: 1.0.0

UT32M0R500 Header File

Device drivers define all the different peripherals in the UT32M0R500 header file using the same standard format. The UT32M0R500.h header file contains: Interrupt numbers (IRQn) for all exceptions and interrupts; configuration of the processor and peripherals, data structures and the address mapping for all peripherals; finally, the picture shows that the application can define peripherals as a memory pointer to data structures to access their registers.

Configuration of the processdata structures and the add	r all exceptions and interrupts	
typedet	enum IROn	
NonN Haz SYCe Pend	Costma=N0+ Processor Exceptions Numbers */ Swahichnik LGM -14, /*! Nominabilit Interrupt */ Pault Jahn -13, /*! Nominabilit Interrupt */ Rank -5, /*! Octome=N0+ Read Fault Interrupt */ VLIRGN -3, /*! I Octome=N0+ Scali Interrupt */ VLIRGN -3, /*! I Octome=N0+ Scali Interrupt */ VLIRGN -1, /*! I Octome=N0+ Spatem Tick Interrupt */	
/***	UT32MOR500 Specific Interrupt Numbers ******	
	/*1: Cortex-M0+ supports only 32 interrupts */ IBOn = 0, /*1< IBO 0: MEEA */ ITMERO_IRON = 1, /*1< IBQ 1: DualTimerO */	
	peripherals */	
#define #define	ETC_BARE (FERIFH_BARE + 0x000011) // 0x40000000 + 0x0000 = 0x40000000 DOLLINERG_BARE (FERIFH_BARE + 0x000011) // 0x40000000 + 0x1000 = 0x40001000 DOLLINERBARE (FERIFH_BARE + 0x200011) // 1 FMF_BARE (FERIFH_BARE + 0x200011) // 1	7
(struct uintā t CONTROL; /*!< Offset: 0x00: Control Register (R/W) */	
* yye (SI CMN; Maf struct uunislg DATA; /*!< Offset: OxOO, 0 LSbits: Data Register (R/W) */ NI_TypeDef;	
	INER_BOTH_TypeDef *DTINER0 = (DUALINER_BOTH_TypeDef *) DUALTINER0_BASE; TypeDef *GFI02 = (GFI0_TypeDef *) GFI01_BASE;	

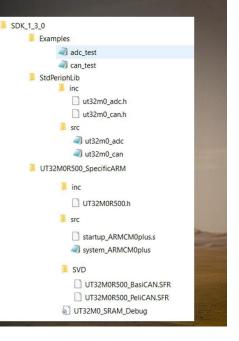
12/2/2022

Version #: 1.0.0

Application Programmer Interface (API)

The application programming interface (API) provides easy-to-use functions by combining the functions of both CMSIS and peripheral drivers. The picture shows API function examples for the timer with description for each of the function calls.

The API provides easy-to-use functions by combining the fu CMSIS and peripheral drivers.	inctions of both
API Function Examples	Description
void DTIMER_Init (DUALTIMER_BOTH_TypeDef *DTIMERx, DTIMER_InitTypeDef *Config)	/*initializes the DTIMER for default operation*/
<pre>void DTIMER_StructInit (DTIMER_InitTypeDef *DTIMER_InitStruct)</pre>	/*initializes the DTIMER_InitStruct to known values*/
void DTIMER_Cmd (DUALTIMER_BOTH_TypeDef *DTIMERx, DTIMER_NUM Num, DTIMER_ENABLE Enable)	/*enables/disables the DTIMERx peripheral*/
void DTIMER_EnableIRQ (DUALTIMER_BOTH_TypeDef *DTIMERx, DTIMER_NUM Num)	/*enables/disables the DTIMERx IRQ*/
	/*Enables a device specific interrupt in the ${\tt NVIC^*/}$


SDK Library Structure

The Frontgrade SDK Library Directory Structure includes:

- Examples folder has example code for configuring and testing all the different peripherals.
- StdPeriphLib\inc folder has header files for defining the device driver API's.
- StdPeriphLib\src folder has software programs for all device drivers.
- UT32M0R500_SpecificARM directory has ARM specific files, i.e., the ARM Cortex M0+ startup file.

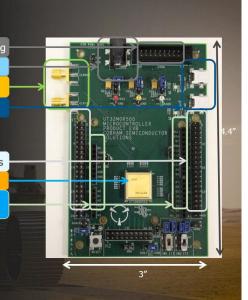
• The CAES SDK Directory Structure

- \SDK_x_y_z\Examples
 - example code for configuring and testing all the different peripherals
- SDK_x_y_z\StdPeriphLib\inc
 - header files for defining the device driver APIs
- SDK_x_y_z\StdPeriphLib\src
 - software programs for all device drivers
- SDK_x_y_z\UT32M0R500_SpecificARM
 - ARM specific files, i.e., the ARM Cortex M0+ startup file

12/2/2022

UT32M0R500 Evaluation Board

UT32MOR500 EVB allows for the quickest way to get started with the UT32M0R500 microcontroller. The EVB is optimized for rapid prototyping and supports Arduino Uno connectivity. The UT32M0R500-EVB development board is available for purchase.


• UT32M0R500 EVB

- Quickest way to get started with the UT32M0R500 microcontroller
- Optimized for rapid prototyping
 supports Arduino Uno connectivity
- The UT32M0R500-EVB development board is available for purchase

JTAG Interface for Debugging

USB-to-UART Connections
UT32M0R500 Connector Pins

Arduino Shield compatible

12/2/2022

Arm Keil Microcontroller Development Kit (MDK)

The ARM Keil Microcontroller Development Kit (**MDK**) is an Integrated Development Environment (**IDE**). The free MDK-Lite edition allows code size of up to 32 KB. The IDE contains Compiler, Editor, Debugger and other Tools.

ULINK2 Debug Adapter connects to the UT32M0R500 microcontroller via JTAG and allows to program and debug applications.

Version #: 1.0.0

Application

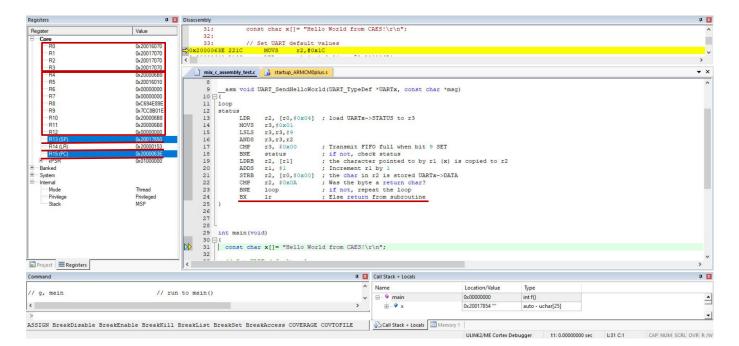
The app note focuses on going through the application, and for details on how to create a project using **the Keil ARM** development tools, refer to the app note: **ApNote_UT32M0R500_Creating_Projects**, which can be downloaded from Frontgrade website.

The main program is written in C, but an assembly subroutine performs the operation of sending the "hello world from Frontgrade!" string to a **Terminal.** Most embedded systems are written in **C** with assembly language used only for critical-time tasks. This is because writing in **C** is much faster when compare to assembly language.

The main program contains one variable, which is a char array with the "hello world from Frontgrade!" message; the API function **UART_StructInit** initializes the UART structure to default values, **UART_Init** initializes the UART, and **UART_Cmd** enables the UART. Finally, the **UART_SendHelloWorld** subroutine sends one character at a time to the Terminal.

<pre>>sem_coid_UART_SendHelloWorld(UART_TypeDef 'UARTx, const char 'msg) 10 { 11 } 20 { 21 } 20 { 21 } 21 } 20 2 { 21 } 21 } 20 2 { 21 } 21 } 20 2 { 21 } 21 } 21 } 20 2 { 21 } 21 } 21 } 21 } 21 } 21 } 21 } 21 }</pre>	1	mix	_c_assembly_test.c	startup_ARMCM0pl	us.s	• ×
<pre>X 11 1000 11 10000 11 100000 11 10000 11 10000 11 10000 11 10000 11 10000 11 100000 11 1000000 11 1000000 11 100000 11 10000000 11 1000000 1</pre>	X	9	asm woid UAR	T SendHelloWorld (UA	RT_TypeDef *UARTx, const char *msg)	^
<pre>x 12 x 13 x 13 x 14 x 15 x 15 x 15 x 15 x 16 x 100 x x2, tr0, s0x001 ; Imagenic FIFO full when bit 9 SET x 16 x 16 x 100 x 12, tr1, s0x00 ; Imagenic FIFO full when bit 9 SET x 17 x 18 x 19 x 10 x 100 x 12, tr1, tr0, s0x00 ; Imagenic FIFO full when bit 9 SET x 19 x 10 x 100 x 1, tr1 ; The character pointed to by r1 (x) is copied to r2 x 20 x 12, tr0, s0x00 ; Imagenic FIFO full when bit 9 SET x 10 x 100 x 1, tr1 ; The character pointed to by r1 (x) is copied to r2 x 20 x 12, s0x00 ; Imagenic FIFO full when bit 9 SET x 21 x 10 x 10 x 10 x 10 x 10 x 10 x 10</pre>		10 Ę] {			0.00
<pre>X 13 LDR r2, [r0; 0:0004] ; load UARIx->STATUS to r3 MOUS r3, r0x01 LSLS r3,r0x01 LSLS r3,r0x02 LDRB r3, r0x02 X 17 CHP r3, 00x02 X 17 LDRB r2, [r1] ; the character pointed to by r1 (x) is copied to r2 ADDS r1, f1 ; the character pointed to by r1 (x) is copied to r2 ADDS r2, [r1] ; the character r0x12 CHP r3, 00x02 X 21 STRB r3, [r0; 00x02] ; the char in r1 is stored UARIx->DATA 22 CHP r3, 00x02 X 23 BHE loop ; if not, repeat the loop 23 BHE loop ; if not, repeat the loop 24 CHP r3, for a fail r r r r r r r r r r r r r r r r r r r</pre>	×					
<pre>14 MOVS r3, stool 15 LSLS r3, r3, r3, r3 16 ANDS r3, r3, r2 17 CMP r3, f0x00 ; Iransmit FIFO full when bit 9 SET 18 ENE status ; if not, check status 20 ADDS r1, r1 ; the character pointed to by r1 (x) is copied to r2 20 ADDS r1, r1 ; increment r1 by 1 21 STBB r2, [r0, 0000) ; the char in r2 is stored UARTs-DATA 22 CMP r2, 0000A ; Mag the byte a return char? 23 ENE loop ; if not, repeat the loop 24 EX 1r ; Elke return from subroutine 25 j 26 j 27 [29 [29 [29 [29 [20] 29 [29 [29] 29] 29 [29] 29] 29 [29] 29] 29] 29] 29] 29] 29] 29]</pre>						
<pre>16 LSLS r1,s1,s1 16 ANDS r1,s1,s1,r2 17 CMP r1,s0000 ; TRANSMIT FITO full when bit 9 SET 18 DEB status ; 15 ADD, check status 19 LDDEB r2, (r1) ; the character pointed to by r1 (x) is copied to r2 20 ADDS r1, s1 ; LDCEBERGE r1 by 1 21 STRB r2, (r0,0000) ; the byte a stourn char? 23 BME loop ; 15 ADD, repeat the loop 24 25 } 25 } 26 fr r2, s000A ; Mas the byte a stourn char? 26 BME loop ; 15 ADD, repeat the loop 27 // Set UART default values 28 JAR return from subroutine 29 // Set UART default values 20 // Set UART default values 26 // Initialise the UART // InitStruct); 26 // Initialise the UART // UART_InitStruct); 27 // enable UART // enableL, ENABLE, ENABLE); 28 // enable UART // ENABLE, ENABLE); 29 // enable UART // Set UART (UARTO, x); 20 // Set () // This // Set UARTO, FURBLE, ENABLE); 29 // enable UART // ENABLE, ENABLE); 20 // Set () // This // Set UARTO, ENABLE, ENABLE); 20 // Set () // This // Set UARTO, ENABLE, ENABLE); 20 // Set () // Not // Set UARTO, ENABLE, ENABLE); 20 // Set () // Construct); 21 // Set () // Construct); 22 // Set () // Construct); 23 // Set () // Construct); 24 // Set () // Construct); 25 // Enable() // Construct); 26 // Construct); 27 // Set () // Construct); 28 // enable() // Construct); 29 // enable() // Construct); 20 // Set () // Construct); 21 // Set () // Construct); 22 // Set () // Construct); 23 // Set () // Construct); 24 // Set () // Construct); 25 // Construct); 26 // Construct); 27 // Construct); 28 // Construct); 29 // Construct); 20 // Construct); 20 // Construct); 20 // Construct); 21 // Construct); 22 // Set () // Construct); 23 // Set () // Construct); 24 // Construct); 25 // Construct); 26 // Construct); 27 // Construct); 27 // Construct); 28 // Construct); 29 // Construct); 20 // Construct); 20 // Construct); 20 // Construct); 20 // Construct); 21 // Construct); 22 // Construct); 23 // Construct); 24 /</pre>	×				ad UARTx->STATUS to r3	
<pre>16 ANDS r3,r3,r2 CMP r3, c0x00 ; TRansmit FIFO full when bit 9 SET 17 ENE Status ; if not. check status 18 ENE status ; if not. check status 19 LDBE r1, c1 ; if not.check status 20 ADDS r1, c1 ; if not.check status 21 DDS r1, c1 ; if not.check status 22 CMP r1, c0x00A ; Mag the byte a stored UARTs-DATA 22 CMP r1, c0x0A ; Mag the byte a stored UARTs-DATA 23 ENE loop ; if not.stored UARTs-DATA 24 EN lr ; E0, c0x0A ; Mag the but a loop 25 } 26 27 29 Int main(void) 30 C { 30 CMP r1, c1 = "Hello World from CAESI\r\n"; 32 // Set UART default values 33 // Set UART default values 44 UART_StructInit (sUART_InitStruct); 35 36 // Initialise the UART 44 UART_StructInit (sUART_InitStruct); 45 45 44 UART_StructInit (sUART_InitStruct); 45 45 44 UART_StructInit (sUART_InitStruct); 45 44 UART_StructInit (sUART_InitStruct); 45 44 UART_StructInit (sUART, HUARTD, SUART_InitStruct); 45 44 UART_StructInit (SUART_InitStruct); 45 44 UART_StructInit (SUART_InitStruct); 45 45 44 UART_StructInit (SUART_InitStruct); 45 44 UART_StructInit (SUART_InitStruct); 45 45 45 45 45 45 45 45 45 45</pre>						
<pre>X 17 CFP r3, s0x00 ; fIgnmats FIFO full when bit 9 SET BME status ; if not, check status LDEB r2, [r1] ; the character pointed to by r1 (x) is copied to r2 LDEB r2, [r1] ; the character pointed to by r1 (x) is copied to r2 LDEB r2, [r1, s0x00] ; the character pointed to by r1 (x) is copied to r2 CFP r2, s0x00 ; the character pointed to by r1 (x) is copied to r2 CFP r2, s0x00 ; the character pointed to by r1 (x) is copied to r2 CFP r2, s0x00 ; the character pointed to br r1 EX r3 BFE loop ; if 205, repeat the loop EX r4 [r1] ; Extended to by r1 (x) is copied to r2 CFP r2, s0x00 ; the character pointed to br r2 CFP r2, s0x00 ; the byre a return char? EX r4 [r1] ; Extended to by r1 (x) is copied to r2 CFP r2, s0x00 ; the character pointed to br r2, s0x00 ; the character pointed to br r2, s0x00 ; the character p</pre>						
<pre>X 18 BHE status ; if non, check status LDDB st2, [r1] ; thg character pointed to by r1 (x) is copied to r2 ADDS s1, s1 ; increment r1 by 1 STBB r2, [r0, 0000] ; the char in r2 is stored UARTx->DATA CMP r2, \$0x0A ; Has the byte a seturn char? BHE loop ; if non, char in r2 is stored UARTx->DATA CMP r2, \$0x0A ; Has the byte a seturn char? BHE loop ; if non, char in r0 is subroutine K 24 EX lr ; Rake return from subroutine K 25 ; C = cont char x[]= "Hello World from CAES1\r\n"; C = cont char x[]= the UART C = cont char x[]= the</pre>						
<pre>25 } 26 // 27 // 28</pre>	1X					
<pre>25 } 26 // 27 // 28</pre>	l Č					
<pre>25 } 26 // 27 // 28</pre>	0					
<pre>25 } 26 // 27 // 28</pre>						
<pre>25 } 26 // 27 // 28</pre>						
<pre>25 } 26 // 27 // 28</pre>						
<pre>25 } 26 // 27 // 28</pre>	1Q					
<pre>26 27 28 29 int main(void) 30 E{ 31 const char x[]= "Hello World from CAES!\r\n"; 32 33 // Set UART default values 34 UUART_StructLnit (UUART_InitStruct); 35 36 // Initialize the UART 37 UUART_Init (UUARTO, SUART_InitStruct); 38 39 // enable UART 40 UUART_Omd (UARTO, ENABLE, ENABLE); 41 42 UUART_SendHelloWorld(UUARTO,x); 43 44 for(;;) 45 E (</pre>	^		1	, ««		
<pre>27 27 28 30 D{ 30 D</pre>			1			
<pre>29 int main(void) 30 日{ 30 日; const char x[]= "Hello World from CAES!\r\n"; 32 33 // Set UART default values 34 UART_StructInit (aUART_InitStruct); 35 36 // Initialize the UART 37 UART_Init (UARTO, sUART_InitStruct); 38 39 // enable UART 40 UART_Crnd (UARTO, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UARTO,x); 43 44 for(;;) 45 日 (</pre>						
<pre>30 □ { 30 □ { 31 const char x[]= "Hello World from CAES!\r\n"; 32 33 // Set UART default values 34 UART_Scructlnit (UART_InitStruct); 35 36 // Initialise the UART 37 UART_Init (UART0, sUART_InitStruct); 38 39 // enable UART 40 UART_Camd (UART0, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UART0,x); 43 44 for(;;) 45 □ (</pre>		28				
<pre>31 const char x[]= "Hello World from CAES!\r\n"; 32 33 // Set UART default values 34 UART_StructLnit (dUART_InitStruct); 35 36 // Initialize the UART 37 UART_Init (UARTO, \$UART_InitStruct); 38 39 // enable UART 40 UART_Cad (UARTO, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UARTO,x); 43 44 for(;;) 45 E (</pre>		29	int main (void)			
<pre>32 33 // Set UART default values 34 UART_StructInit (&UART_InitStruct); 35 36 // Initialize the UART 37 UART_Init (UARTO, &UART_InitStruct); 38 39 // enable UART 40 UART_Cmd (UARTO, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UARTO,x); 43 44 for(;;) 45 E (</pre>		30 Ę				
<pre>33 // Set UART default values 34 UART_StructInit (&UART_InitStruct); 35 36 // Initialize the UART 37 UART_Init (UARTO, SUART_InitStruct); 38 39 // enable UART 40 UART_Cod (UARTO, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UARTO,x); 43 44 for(;;) 45 E (</pre>			const char x	[]= "Hello World fr	om CAES!\r\n";	
<pre>34 UART_StructInit (&UART_InitStruct); 35 36 // Initialize the UART 37 UART_Init (UARTO, &UART_InitStruct); 38 39 // enable UART 40 UART_Cmd (UARTO, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UARTO,x); 43 44 for(;;) 45 f() </pre>						
<pre>35 // Initialize the UART 36 // Initialize the UART 37 UART_Init (UARTO, SUART_InitStruct); 38 39 // enable UART 40 UART_Cmd (UARTO, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UARTO,x); 43 44 for(;;) 45 € (</pre>						
<pre>36 // Initialize the UART 37 UART_Init (UARTO, &UART_InitStruct); 38 39 // enable UART 40 UART_Cnd (UARTO, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UARTO,x); 43 44 for(;;) 45 E (</pre>			UART_StructI	nit (SUART_InitStru	ct);	
<pre>37 UART_Init (UARTO, \$UART_InitStruct); 38 39 39 // enable UART 40 UART_Cnd (UARTO, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UARTO,x); 43 44 for(;;) 45 cf </pre>			1000 00 10 100			
<pre>38</pre>						
<pre>39 // enable UART 40 UART_Omd (UART0, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UART0,x); 43 44 for(;;) 45 € (</pre>			UART_Init (U	JARIO, SUART_InitStr	uct);	
<pre>40 UART_Cmd (UART0, ENABLE, ENABLE); 41 42 UART_SendHelloWorld(UART0,x); 43 44 for(;;) 45 □ (</pre>			//	57		
<pre>41 42 UART_SendHelloWorld(UART0,x); 43 44 for(;;) 45 € (</pre>					3	
<pre>42 UART_SendHelloWorld(UART0,x); 43 44 for(;;) 45 □ {</pre>			UARI_CING (UA	RIO, ENABLE, ENABLE		
43 44 for(;;) 45 ⊡ (ULDT SandHal	loworld (UAPTO v) -		
44 for(;;) 45 ⊡ f			Jendier	autoria (onkio, A) ,		
45 ± 1			for(;;)			
<						~
	<					>

m	сомз	- Tera T	erm VT			-	×
				Window	Help		
Hell	o Wo	rld fi	om CAE	S ?			^
							~
							~


The window on the left shows the core registers.

When a function calls a subroutine, it places the return address in the link register **Ir**. The arguments are passed in registers **r0** through **r3**, starting with **r0**. If there are more than 4 arguments, they are passed on the stack.

R0 through **r3** can be used for temporary storage if they are not used for arguments.

Registers **r4** through **r11** must be preserve by a subroutine. If any must be used, they must be saved first and restored before returning. This can be done by pushing to and popping them from the stack.

The **bx lr** instruction will reload the **pc** with the return address value from the **lr**. If the function returns a value, it will be pass through register **r0**.

Version #: 1.0.0

Resources

UT32M0R500 Reference Manual: https://caes.com/sites/default/files/documents/Datasheet-UT32M0R500.pdf UT32M0R500 Datasheet: https://caes.com/sites/default/files/documents/Datasheet-UT32M0R500.pdf Cortex M0+ Technical Reference Manual: https://documentation-service.arm.com/static/60411750ee937942ba301773 Cortex M0+ Generic User Guide: https://documentation-service.arm.com/static/5f04abc8dbdee951c1cdc9f7 Cortex M0+ Processor Overview: https://documentation-service.arm.com/static/5f04abc8dbdee951c1cdc9f7 Cortex M0+ Processor Overview: https://documentation-service.arm.com/Processors/Cortex-M0-Plus UT32M0R500 App Notes: https://documentation-service.arm.com/Processors/Cortex-M0-Plus

Revision History

Date	Revision #	Author	Change Description	Page #
12/2/22	1.0.0	JA	Initial Release.	

Datasheet Definitions

	Definition
Advanced Datasheet	Frontgrade reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	Frontgrade reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service convey a license to any patents, rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.